...
首页> 外文期刊>Economic geology and the bulletin of the Society of Economic Geologists >Iron Oxide Mineralization at the Contact Zone Between Phyllite and Itabirite of the Pau Branco Deposit, Quadrilátero Ferrífero, Brazil— Implications for Fluid-Rock Interaction During Iron Ore Formation
【24h】

Iron Oxide Mineralization at the Contact Zone Between Phyllite and Itabirite of the Pau Branco Deposit, Quadrilátero Ferrífero, Brazil— Implications for Fluid-Rock Interaction During Iron Ore Formation

机译:氧化铁矿化在Pau Branco沉积物,QuadriláteroFerrífero,QuadriláteroFerrífero,QuadriláteroFerrífero,在铁矿石形成期间对流体岩相互作用的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This study examines the whole-rock geochemistry and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) iron oxide chemistry of itabirite and related iron ore, as well as underlying phyllitic wall rock, of the Pau Branco iron ore deposit, Quadrilátero Ferrífero, Brazil. The phyllite and iron ore of Pau Branco extend from hypogene deep-seated into supergene weathered zones. The phyllitic sequence that underlies the itabirite-hosted iron ore along a sheared contact includes (from the bottom to top) carbonaceous and carbon-ate-, chlorite-, and Fe-rich zones, which likely reflect distal to proximal alteration halos. The Fe-rich phyllite and iron ore comprise a complex iron oxide mineralogy: (1) magnetite-martite is hosted in itabirite and related medium-grade iron ore and present as disseminated minerals in phyllite; (2) microplaty hematite replaces chlorite and carbonate in the phyllite; (3) granoblastic hematite is a recrystallization/precipitation product and the dominant iron oxide of the hard iron ore; (4) schistose specular hematite overgrows earlier iron oxides; and (5) goethite replaces earlier hematite and amphibole within the weathering horizon.Whole-rock geochemistry and related mass balance calculations reveal that, unlike the itabirite-hosted iron ore, interpreted to be the result of a solely residual iron enrichment via depletion of most major oxides and trace elements, the iron enrichment of the phyllite is caused by addition of Fe_2O_3. The Fe_2O_3 is likely sourced from the overlying itabirite/iron ore and is mineralogically reflected in the replacement of carbonate and chlorite by hematite. The rare earth elements (REE) abundances of the different ore and phyllite zones reveal seawater-like REE signatures and Y/Ho ratios of the itabirite, hypogene and supergene iron ore, shale-atypical REE patterns in the unaltered phyllite, and Eu fractionation trends. This suggests a distinct input of hydrothermal fluids during the Fe enrichment of the phyllite. Locally, restricted Ce fractionation is attributed to distinct (e.g., Mn-rich) lithostratigraphic intercalations within the itabirite. Laser ablation-ICP-MS mineral chemistry of phyllite-hosted martite and rgicroplaty hematite suggests a strong chemical inheritance by the host rock and precursor mineral. Positive Ce anomalies are restricted to phyllite- and itabirite-hosted martite only and, therefore, may reflect the highly oxidative conditions during martitization. At Pau Branco, the fluid-rock interaction affected not only the itabirite, but also the underlying phyllite, resulting in distinct alteration halos that extend beyond the itabirite toward the footwall. The significant chemical influence and importance of country-rock lithologies as a possible elemental source, for example, must be taken into account when interpreting whole-rock geochemical data and investigating an itabirite-/banded iron formation-hosted iron ore system.
机译:本研究检测全岩地球化学和激光烧蚀电感耦合等离子体质谱(LA-ICP-MS)钛米铁和相关铁矿石的氧化铁化学,以及Pau Branco铁矿石矿床的底层Phyllitic Wall Rock ,巴西QuadriláteroFerrífero。 Pau Branco的Phyllite和铁矿石从后置于叠层中的镁酮延伸到超级乙烯风化区域。沿着剪切接触沿剪切接触底层覆盖铁矿石的植物序列包括(从底部到顶部)碳质和碳氮化合物,氯酸盐和Fe富含区,这可能反射到近端改变卤素的远端。 Fe富含Fe的Phyllite和铁矿石包含复杂的氧化铁矿物学:(1)磁铁矿载体在钛节石和相关的中等级铁矿石中载入,并作为植物植物中的散发矿物质存在; (2)微熵赤铁矿在植物中取代亚甲石和碳酸盐; (3)甘露细胞赤铁矿是一种重结晶/沉淀产品和硬铁矿石的主要氧化铁; (4)Schistose镜面赤铁矿过整早期的氧化铁; (5)甲石取代了较早的赤铁矿和倒置风化地平线。岩石地球化学和相关的质量平衡计算揭示了,与itabirite托管的铁矿石不同,解释为通过大多数耗尽来成为单独残留的铁富集的结果主要氧化物和痕量元素,植物的富集由加入Fe_2O_3引起。 Fe_2O_3可能来自上覆陶瓷/铁矿石中的覆盖物,并通过赤铁矿替代碳酸盐和亚氯酸盐来矿物学地反映。稀土元素(REE)不同矿石和植物区的丰富显示出海水的REE签名和itabirite,alkogene和egriegene铁矿石的y / ho比,在未改变的植物中,页岩非典型ree图案,以及欧盟分级趋势。这表明在植物富集的Fe富集期间水热流体的不同输入。本地,限制的CE分馏归因于itabirite内的不同(例如,富含Mn的)岩石型图形嵌段。激光烧蚀-ICP-MS矿物学宿主矿物和RGICROLOPTATY赤铁矿的矿物化学表明,宿主岩石和前体矿物的强烈化学遗传。阳性Ce异常仅限于仅限植物和钛节子托管的马丁基塔,因此可以反映Martitization期间的高氧化条件。在Pau Branco,流体岩石相互作用不仅影响了itabirite,而且影响了底层的植物,导致不同的改变晕,其延伸超过itabirite朝向脚壁。例如,在解释全岩地球化学数据并研究itabirite /带状托管托管的铁矿石系统时,必须考虑到乡村岩石岩性作为可能的元素来源的显着化学影响和重要性。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号