首页> 外文期刊>Ecological Modelling >Model exploration of interactions between algal functional diversity and productivity in chemostats to represent open ponds systems across climate gradients
【24h】

Model exploration of interactions between algal functional diversity and productivity in chemostats to represent open ponds systems across climate gradients

机译:藻类函数多样性与化学速度生产率与生产率之间的相互作用模型探讨在气候梯度中代表开放的池塘系统

获取原文
获取原文并翻译 | 示例
       

摘要

Eukaryotic microalgae and prokaryotic cyanobacteria (often collectively described as algae) have been proposed as a promising commercially viable feedstock for biofuels and other bioproducts. Open pond algal monocultures are subjected to environmental fluctuations (i.e. temperature), limiting productivity as environmental conditions vary. An approach to overcome such limitation is the replacement of monocultures with customized polycultures that leverage diversity-productivity relationships by exploiting complementary but uninhabited ecological niches. Defining ecological niche complementarity requires an understanding of how traits and trade-offs interact across environmental gradients and for this reason numerical models represent valuable tools to explore the possible solution space prior to experimental design and verification. We have developed a trait-based, dynamic energy budget model (TB-DEB) of microalgal monocultures and polycultures, and simulated the growth of random and customized polycultures under environmental conditions (i.e. temperature, photoperiod) similar to those in operational algal ponds across the US. Each of the algal species selected as a polyculture component is defined by distinct combinations of literature-derived traits related to substrate uptake, light utilization and temperature optima. Members of the polycultures were categorized into algal functional guilds that were defined based on the interaction between thermal traits and pond thermal regimes. When compared to guilds defined by taxonomy, we demonstrate that grouping algal guilds by functional traits can be an effective approach towards improving biomass productivity in operational algal ponds. Simulations show that a polyculture represents the equivalent of a wider niche monoculture, leading to sustained productivity across seasons. Simulations also revealed that higher species diversity and higher functional diversity lead to higher system biomass. In all, results from this m
机译:已经提出了真核微藻和原核青霉菌(通常是藻类)作为生物燃料和其他生物燃料的有前途的商业上可行的原料。开放的池塘藻类单栽培遭受环境波动(即温度),限制生产率随着环境条件而变化。克服这种限制的方法是通过利用互补但无人居住的生态利基来替换具有定制的多种质的单一文化,以利用互补但无人居住的生态利基。定义生态利基互补性需要了解特征和权衡如何跨环境梯度互动,因此数值模型代表有价值的工具,可以在实验设计和验证之前探索可能的解决方案空间。我们已经开发了一种基于特征的动态能源预算模型(TB-DEB)的微藻和多种植体,并模拟了与空中池塘相似的环境条件(即温度,光周期)下的随机和定制的多培养物的生长我们。选择作为聚培养成分的每个藻类物种由与底物吸收,光利用和温度最佳有关的文献衍生性状的不同组合来定义。多种植体的成员分为基于热性状和池塘热度之间的相互作用来定义的藻类功能公会。与由分类学定义的协会相比,我们证明了通过功能性状分组的分组可以是改善运营藻类池中的生物量生产率的有效方法。模拟表明,多培养物代表了相当于更广泛的Niche单一文化,导致季节的持续生产力。仿真还透露,较高的物种多样性和更高的功能多样性导致更高的系统生物质。总而言之,这是来自这个m的结果

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号