首页> 外文期刊>Ecological Modelling >Optimality-based approach for computationally efficient modeling of phytoplankton growth, chlorophyll-to-carbon, and nitrogen-to-carbon ratios
【24h】

Optimality-based approach for computationally efficient modeling of phytoplankton growth, chlorophyll-to-carbon, and nitrogen-to-carbon ratios

机译:基于最优基于浮游植物生长,叶绿素对碳和氮对碳比的计算方法

获取原文
获取原文并翻译 | 示例
           

摘要

To increase the efficiency of computing phytoplankton growth rate (μ), chlorophyll-to-carbon (θ) and nitrogen-to-carbon ratios (QN) in three-dimensional ocean circulation models, it is preferable to directly calculateθandQNfrom ambient environmental factors instead of treating them as independent tracers. Optimality-based modeling has emerged as a novel and efficient approach to fulfill this task. However, it is still unclear precisely how the response of optimality-based models differs from conventional models. We compare a recent optimality-based phytoplankton model (PAHLOW model), based on which the familiar Droop function can be derived, to a commonly used Monod-type (MONOD) model. The two models generate similar patterns ofμwith some important differences. Compared to the MONOD model, the PAHLOW model predicts higherμunder light limitation. The PAHLOW model also predicts thatθdecreases with decreasing light under dim light and predicts decreasingQNwith increasing light even at constant nutrient levels. Compared to the MONOD model, these features of the PAHLOW model qualitatively agree better with laboratory data. The PAHLOW model also suffers from a few shortcomings including the underestimation ofθunder very low light and two times of computation time compared to the MONOD model. The two models generate striking differences ofQNandθin a one-dimensional implementation. Validation of such patterns will require more direct in situ measurements ofμ,θandQN.
机译:为了提高计算浮游植物生长速率(μ),叶绿素对碳(θ)和三维海洋循环模型中的氮对碳比(QN)的效率,优选直接计算θandqnfrom环境因素而不是把它们视为独立的示踪剂。基于最优的建模是作为满足这项任务的新颖有效的方法。然而,仍然仍然不清楚基于最优基础的模型的响应如何与传统模型不同。我们比较最近的基于最佳的Phytoplankton模型(Pahlow模型),基于熟悉的下垂函数可以推导到常用的Monod型(Monod)模型。这两种模型产生了类似的μWITH的模式。与Monod模型相比,Pahlow模型预测了更高的μLINMEN的光限制。 Pahlow模型还预测θdecr,在昏暗的光线下降低光,并且即使在恒定的营养水平下也能够增加光的qnwith。与Monod模型相比,Pahlow模型的这些特征与实验室数据更好地同意。 Pahlow模型也遭受了几个缺点,包括低于光线的低估和与Monod模型相比的两倍计算时间。这两种模型产生了一维实现的醒目差异。验证这种模式的验证将需要更直接的μAndQn的原位测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号