首页> 外文期刊>Ionics >In situ conversion of manganese carbonate to manganese oxide/hydroxide and its supercapacitive analysis in aqueous KOH solution
【24h】

In situ conversion of manganese carbonate to manganese oxide/hydroxide and its supercapacitive analysis in aqueous KOH solution

机译:原位转化锰碳酸锰对氧化锰/氢氧化物及其在KOH溶液中的超级电容分析

获取原文
获取原文并翻译 | 示例
           

摘要

MnCO3 is considered to be a promising electrode material for supercapacitor (SC) and found to be a good material for supercapacitive performance than their counterpart manganese oxides. But the energy storage mechanism of MnCO3 in KOH aqueous solution is not known yet. Hence, in the present work, we have made an attempt to understand the involved energy storage mechanism for MnCO3. MnCO3 with submicron-sized particles are synthesized by simple, cost-effective co-precipitation method at ambient conditions and examined as electrode material for SC application by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) in 2 M KOH electrolyte. To investigate the reason for charge storage mechanism, ex-situ X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) analysis were performed at the different stages of charges/discharge for MnCO3 in KOH electrolyte and a plausible energy storage mechanism is proposed. Hexagonal-MnCO3 transforms to respective oxide/hydroxide once it comes in contact with KOH solution. At the end of 2 h reaction time, Mn(OH)(2) transforms to Mn3O4; however, complete transformation of Mn(OH)(2) to Mn3O4 only occurred when external positive potential was applied. All these results were supported by studying pH and potential influence in the line of well known Pourbaix diagram. Considering all results presented in this manuscript, it is clearly observed that MnCO3 does not perform the electrochemical charge-discharge cycling, but it transforms completely to Mn3O4 in the first or second cycle, and thereafter, Mn3O4 does perform the reversible electrochemical charge-discharge cycling to enable high and stable capacitance.
机译:MnCO3被认为是用于超级电容器(SC)的有希望的电极材料,并且发现超级电容性能的良好材料而不是它们的对应锰氧化物。但是koh水溶液中MnCo 3的能量储存机理尚未知。因此,在目前的工作中,我们试图了解MNCO3所涉及的能量存储机制。具有亚微米尺寸颗粒的MNCO3通过在环境条件下简单,经济高效的共析出方法合成,并通过循环伏安法(CV)和2M KOH电解质中的循环伏安法(CV)和GALVANOTATIC电荷放电(GCD)作为电极材料。为了研究电荷储存机理的原因,在KOH电解质中MNCO3的电荷/放电的不同阶段进行ex原位X射线衍射(XRD)和场发射扫描电子显微镜(FESEM)分析,以及可合理的能量储存机构提出。一旦它与KOH溶液接触,六边形-MNCO3转变为相应的氧化物/氢氧化物。在2小时反应时间结束时,Mn(OH)(2)转变为Mn3O4;然而,在应用外部阳性电位时,才会发生Mn(OH)(2)至Mn3O4的完全变换。通过研究众所周知的POPAIX图表中的pH和潜在影响来支持所有这些结果。考虑到该稿件中提出的所有结果,清楚地观察到MNCO3不执行电化学电荷 - 放电循环,但它在第一或第二循环中完全转化为Mn3O4,此后,Mn3O4确实执行可逆电化学电荷 - 放电循环实现高且稳定的电容。

著录项

  • 来源
    《Ionics》 |2017年第12期|共10页
  • 作者

    Kumar Amit; Sharma Yogesh;

  • 作者单位

    Dept Appl Sci &

    Engn Energy Storage Lab IIT Roorkee Saharanpur Campus Saharanpur 247001 India;

    Dept Appl Sci &

    Engn Energy Storage Lab IIT Roorkee Saharanpur Campus Saharanpur 247001 India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;
  • 关键词

    Carbonate; Spinel; Supercapacitor; KOH;

    机译:碳酸盐;尖晶石;超级电容器;KOH;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号