首页> 外文期刊>International Journal of Solids and Structures >On G(c), J(c) and the characterisation of the mode-I fracture resistance in delamination or adhesive debonding
【24h】

On G(c), J(c) and the characterisation of the mode-I fracture resistance in delamination or adhesive debonding

机译:在G(c),J(c)和DELAMINATION或粘合剂剥离中的模式 - I裂缝抗性的表征

获取原文
获取原文并翻译 | 示例
           

摘要

We focus on the mode-I quasi-static crack propagation in adhesive joints or composite laminates, where inelastic behaviour is due to damage on a relatively thin interface that can be effectively modelled with a cohesive-zone model (CZM). We studied the difference between the critical energy release rate, G(c), introduced in linear elastic fracture mechanics (LEFM), and the work of separation, Omega, i.e. the area under the traction-separation law of the CZM. This difference is given by the derivative, with respect to the crack length, of the energy dissipated ahead of the crack tip per unit of specimen width. For a steadystate crack propagation, in which that energy remains constant as the crack tip advances, this derivative vanishes and Omega = G(c). Thus, the difference between Omega and G(c) depends on how far from steady-state the process is, and not on the size of the damage zone, unlike what is stated elsewhere in the literature. Therefore, even for very ductile interfaces, G(c) = Omega for a double cantilever beam (DCB) loaded with moments and their difference is extremely small for a DCB loaded with forces. We also show that the proof that the critical value of the J integral, J(c), is equal to the nonlinear energy release rate is not valid for a non-homogeneous material. To compute G(c), for a DCB, we use a method based on the introduction of an equivalent crack length, a(eq), where the solution is a product of a closed-form part, which does not require the measurement of the actual crack length, and of a corrective factor where the knowledge of the actual crack length is required. However, we also show that this factor is close to unity and therefore has a very small effect on G(c). (C) 2018 The Authors. Published by Elsevier Ltd.
机译:我们专注于粘合剂接头或复合层压板中的模式-I准静态裂纹传播,其中非弹性行为是由于损坏的相对薄的界面,可以用粘性区模型(CZM)有效地建模。我们研究了在线弹性骨折力学(铅值裂缝(铅值)中引入的临界能量释放速率,G(C)的差异,以及分离,ω,即CZM牵引分离法下的区域。这种差异由衍生的相对于裂缝长度给出,该裂缝长度在每单位样品宽度的裂缝尖端前面的能量散发。对于稳定的裂纹传播,在这种情况下,随着裂缝尖端的进步,能量保持恒定,这种衍生物消失和ω= G(c)。因此,OMEGA和G(c)之间的差异取决于从稳态的进程到损伤区的大小,与文献中其他地方的载体不同。因此,即使对于非常延性的界面,对于装载矩的双悬臂梁(DCB)的G(C)= Omega也非常小,对于装载力的DCB非常小。我们还表明,j积分j(c)的临界值等于非线性能量释放率的证据对非均匀材料无效。为了计算G(c),对于DCB,我们使用基于引入等效裂缝长度的方法(EQ),其中解决方案是封闭式部分的乘积,这不需要测量实际裂缝长度,以及需要实际裂缝长度的知识的纠正因素。然而,我们还表明,这个因素接近统一,因此对G(C)有很小的影响。 (c)2018作者。 elsevier有限公司出版

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号