首页> 外文期刊>International Journal of Solids and Structures >Plastic anisotropy and failure in thin metal: Material characterization and fracture prediction with an advanced constitutive model and polar EPS (effective plastic strain) fracture diagram for AA 3014-H19
【24h】

Plastic anisotropy and failure in thin metal: Material characterization and fracture prediction with an advanced constitutive model and polar EPS (effective plastic strain) fracture diagram for AA 3014-H19

机译:薄金属的塑料各向异性和失效:材料表征和裂缝预测,具有先进的本构模型和极性EPS(有效塑料应变)AA 3014-H19的裂缝图

获取原文
获取原文并翻译 | 示例
           

摘要

Material characterizations for plasticity and fracture have been conducted from uniaxial tensile tests, biaxial bulge test, and disk compression test for a beverage can AA3104-H19 material. The results from the experimental tests are used to determine material coefficients for the Yld2004-18p model (Barlat et al., 2005). Finite element simulations are developed to evaluate the predicted earing profile, It is shown that the Yld2004-18p model is capable of accurately predicting the complex earing profile. Excellent agreement with the experimental data for eight ears exhibited in AA3014-H19 is achieved using the Yld2004-18p constitutive model. Further mechanical tests are also conducted on the AA3104-H19 to generate fracture data under different stress triaxiality conditions. Tensile tests are performed on the samples with a central hole and notched specimens to achieve tensile and plane-strain conditions. A specially designed torsion test of a double bridge specimen is conducted to generate the points near pure shear conditions. The Nakajima test is also utilized to produce a hi-axial tension condition. The data from the experiments is used to generate the fracture locus in the principal strain space. Mapping from the principal strain space to stress triaxiality space, principal stress space, and Polar Effective Plastic Strain (PEPS) space is accomplished for a general yield function. Finite element modeling is used to validate the fracture diagram in the polar space. A model of a hole expansion during cup drawing demonstrates the robustness of the PEPS fracture theory for a condition with a highly anisotropic material and accurately predicts the direction for onset of failure. (C) 2018 Elsevier Ltd. All rights reserved.
机译:从单轴拉伸试验,双轴凸起试验和饮料的磁盘压缩试验进行了可塑性和骨折的材料特征可以AA3104-H19材料。实验测试的结果用于确定YLD2004-18P模型的材料系数(Barlat等,2005)。开发有限元模拟以评估预测的耳廓轮廓,示出了YLD2004-18P模型能够准确地预测复杂的耳廓轮廓。使用YLD2004-18P本构模型实现了AA3014-H19中展出的八个耳朵的实验数据的优秀协议。还在AA3104-H19上进行进一步的机械测试,以在不同的应力三轴性条件下产生裂缝数据。在具有中心孔和缺口样品的样品上进行拉伸试验,以实现拉伸和平面应变条件。进行双桥样品的特殊设计扭转试验,以在纯剪切条件下产生点。 Nakajima测试也用于生产高轴张力条件。来自实验的数据用于在主应变空间中产生裂缝基因座。从主应变空间到应力三轴性空间,主应力空间和极性有效塑料应变(PEPS)空间的映射为一般屈服功能。有限元建模用于验证极性空间中的骨折图。杯子图中的孔膨胀模型演示了Peps裂缝理论对具有高各向异性材料的条件的鲁棒性,并且精确地预测失败发作的方向。 (c)2018年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号