首页> 外文期刊>International Journal of Thermal Sciences >Experimental characterization and modeling of critical heat flux with subcooled foaming solution
【24h】

Experimental characterization and modeling of critical heat flux with subcooled foaming solution

机译:用脱硫发泡溶液的临界热通量的实验表征及临界热通量的建模

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Boiling relies on the latent heat of vaporization to dissipate large heat fluxes within small temperature budgets, i.e., demonstrates high heat transfer coefficient (HTC). Addition of surfactants in water is a commonly used HTC enhancement technique during boiling. However, the vapor-crowding of the heater surface due to the foaming nature of solution induces a premature boiling crisis. Vapor-crowding also renders typical wettability improvement techniques futile for critical heat flux (CHF) enhancement. Resulting low CHF values limit the use of surfactants to low heat flux applications. Here we perform experiments to show that subcooling induced condensation of rising bubbles can be used to suppress vapor-crowding and enhance the CHF in comparison to saturated boiling with foaming solutions. We include the contribution of effective vapor-removal due to the condensation of rising bubbles in the model for saturated boiling to successfully predict the experimental CHF data over a wide range of subcooling. An enhancement of approximate to 3.5x in CHF in comparison to saturated condition was observed at 40 degrees C subcooling. We further show that wettability improvement techniques such as nanostructuring are ineffective for CHF enhancement even under subcooled conditions. However, at any subcooling, preferential nucleation within microchannels followed by forced coalescence of otherwise non-coalescing bubbles forms separate vapor-removal and liquid-supply pathways to enhance the CHF (approximate to 15 = 35%) in comparison to the baseline surface without microchannels. Furthermore, we use these new physical insights to revisit pool boiling with pure and subcooled water to propose an accurate mechanistic model for CHF data in literature. We believe that the physical insights presented in this work can be used to optimize the design of heater surfaces to further improve CHF with foaming solutions.
机译:沸腾依赖于蒸发的潜热,以在小的温度预算范围内消散大的热量通量,即,展示了高传热系数(HTC)。在水中添加表面活性剂是沸腾过程中常用的HTC增强技术。然而,由于溶液的发泡性质,加热器表面的蒸汽拥挤诱导过早沸腾危机。蒸汽拥挤也使典型的润湿性改善技术徒劳为临界热通量(CHF)增强。导致低CHF值限制使用表面活性剂到低热量通量应用。在这里,我们进行实验表明,与饱和沸腾的饱和溶液相比,抑制升高的气泡的诱导诱导的血泡凝结并增强CHF。我们包括有效蒸汽去除的贡献由于模型中饱和沸腾模型中的泡沫的冷凝来成功地预测在各种过脱机上的实验性CHF数据。在40摄氏度下观察到与饱和条件相比,在CHF中的近似增加到3.5倍的增强。我们进一步表明,即使在过冷条件下,纳米结构的润湿性改善技术如纳米结构也无效。然而,在任何过冷,在微通道内的优先成核,然后被强制聚结,以其他方式非聚结气泡形成单独的蒸汽除去和液体供应途径,以便与没有微通道的基线表面相比增强CHF(近似为15 = 35%) 。此外,我们使用这些新的身体见解来重新驾驶池沸腾,用纯净和过冷水沸腾,提出一种精确的文献中CHF数据的机制模型。我们认为,在这项工作中提出的物理见解可用于优化加热器表面的设计,以进一步改善具有发泡溶液的CHF。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号