首页> 外文期刊>International Journal of Rock Mechanics and Mining Sciences >Three dimensional finite element simulations of hydraulic fracture height growth in layered formations using a coupled hydro-mechanical model
【24h】

Three dimensional finite element simulations of hydraulic fracture height growth in layered formations using a coupled hydro-mechanical model

机译:使用耦合水力机械模型的三维有限元模拟层状骨折高度生长的三维有限元模拟

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper, we treat the important problem of hydraulic fracturing in the presence of elastic modulus and stress contrast in layered rock systems encountered in petroleum resources development using a fully coupled 3D hydro-mechanical model. First, the model is validated by simulating a laboratory hydraulic fracturing experiment dealing with the influence of stress contrast. Good agreements in the distribution of fracture aperture, injection pressure and fracture footprint have been achieved. Then, numerical analyses are performed to investigate the influence of in-situ stress and formation layer properties, such as Young's modulus and fracture energy release rate on the height growth and containment of hydraulic fractures. Comparing the results of simulations using conventional thickness-weighted Young's modulus to those from explicit modeling of layers' Young's moduli, it is found given that for the same amount of injection volume, the thickness-weighted modulus generates a higher injection pressure. Explicit modeling of the layers influences the hydraulic fracture aperture distribution in the pay zone as well as in the surrounding layers. A relatively large fracture aperture is observed in the layer with the lower Young's modulus. Also, the hydraulic fracture tends to propagates mainly in the lower Young's modulus layers which could facilitate containment of the hydraulic fracture by limiting height growth in the stiffer layers. When considering the influence of stress contrast on height growth, the conventional equilibrium height model produces a relatively large aperture and overestimates the fracture height. Simulations using typical injection rate, fluid viscosity, and in-situ stress, show stress contrast larger than a certain value, for example 30% of the in-situ minimum horizontal stress, can effectively inhibit height growth. When the payzone is bounded by ductile layers, the injection pressure is higher and the corresponding aperture at the injection point is larger than those obtained using uniform rock properties.
机译:本文采用全耦合3D水电模型对石油资源开发中遇到的层状岩体系统存在下液压压力的重要问题。首先,通过模拟处理应力对比的影响的实验室水力压裂实验来验证该模型。已经实现了骨折孔径,注射压力和断裂足迹的良好协议。然后,进行数值分析以研究原位应力和地层性质的影响,例如杨氏模量和裂缝能量释放率对高度生长和液压裂缝的遏制。将仿真使用传统厚度加权杨氏模量进行比较从层次的显式建模的那些,发现对于相同量的注射量,厚度加权模量产生较高的喷射压力。层的明确建模会影响养料区的液压骨折孔径以及周围层。在具有较低杨氏模量的层中观察到相对大的骨折孔。而且,液压断裂趋于主要在较小的杨氏模量层中传播,这可以通过限制更纤细的层中的高度生长来促进液压断裂。当考虑应力对比对高度生长的影响时,传统的平衡高度模型产生相对大的孔径并高估裂缝高度。模拟使用典型的注射速率,流体粘度和原位应力,显示出大于某个值的应力对比,例如30%的原位最小水平应力,可以有效地抑制高度生长。当用韧带层界定Payzone时,注射压力较高,并且注射点处的相应孔径大于使用均匀岩石性能获得的孔径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号