首页> 外文期刊>International Journal of Plasticity >Modelling of shock waves in fcc and bcc metals using a combined continuum and dislocation kinetic approach
【24h】

Modelling of shock waves in fcc and bcc metals using a combined continuum and dislocation kinetic approach

机译:使用组合的连续体和脱位动力学方法建模FCC和BCC金属的冲击波

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Recent experimental data has revealed that, over short time scales (on the nanosecond scale), during formation of a shock in metals, amplitude of the 'elastic' precursor greatly exceeds the Hugoniot elastic limit (HEL), before decaying to the level of the HEL. Standard continuum scale material models are unable to reproduce this behaviour. To capture this aspect of material behaviour in metals, physical effects related to high rate dislocation mechanics must be taken into consideration (Mayer et al., 2013) and included into the continuum scale material model. The constitutive model developed here is defined at the continuum level, where the evolution of plastic deformation is controlled with a system of equations for three microscale state variables, for each slip system of a single crystal. These three state variables are the density of mobile dislocations, the density of immobile dislocations and the mobile dislocation velocity. The density evolutions of mobile and immobile dislocations are controlled by dislocation kinetic equations, which account for the generation of new dislocations, immobilisation of mobile dislocations and annihilation of dislocations. Dislocation velocity is determined by integration of the equations of motion of the mobile dislocations. The dislocation micromechanics is incorporated into the continuum model using the generalised Orowan equation, which relates plastic strain rate to the density of mobile dislocations and the velocity of mobile dislocations. Evolution of the yield surface is controlled by density of immobile dislocations.
机译:最近的实验数据显示,在短时间内(在纳秒刻度上),在形成金属的冲击期间,“弹性”前体的幅度大大超过Hugoniot弹性极限(HEL),然后腐蚀HEL。标准连续体秤材料模型无法重现这种行为。为了捕获金属中的材料行为的这一方面,必须考虑与高速脱位机械相关的物理效果(Mayer等,2013)并包含在连续秤材料模型中。这里开发的本构模型在连续体水平上定义,其中塑性变形的演变被控制在三个微级状态变量的方程式系统,用于单晶的每个滑动系统。这三种状态变量是移动脱位的密度,固定位错密度和移动位错速度。移动和固定脱位的密度演进由位错动力学方程控制,其占新脱位的产生,移植移动脱臼和脱离脱臼的脱离。通过集成移动脱位的运动方程来确定位错速度。使用广义的奥罗瓦南方程将位错微机械掺入连续体模型中,这将塑料应变率与移动脱位密度和移动脱位的速度相关。屈服表面的进化由固定位错的密度控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号