首页> 外文期刊>International Journal of Plasticity >Atomistic investigation on superelasticity of NiTi shape memory alloy with complex microstructures based on molecular dynamics simulation
【24h】

Atomistic investigation on superelasticity of NiTi shape memory alloy with complex microstructures based on molecular dynamics simulation

机译:基于分子动力学模拟的复杂微结构的NITI形状记忆合金超弹性原子研究

获取原文
获取原文并翻译 | 示例
           

摘要

Superelasticity of NiTi shape memory alloy (SMA) with complex microstructures is investigated at the atomistic scale based on molecular dynamics (MD) simulation. Six models representing different microstructures are established and they deal with BG (bicrystal grain) model, NG (nanocrystal grain) model, MG (mixed grain) model, which stands for the mixture of a coarse grain and NG, PS (polymorphic structure) model, which is composed of a coarse grain, NG and amorphous phase, {114} twin model and {112} twin model. Only the NG model presents a perfect stress plateau in the case of loading under the tensile strain of 8%. However, PS model, {114} twin model and {112} twin model show a monotonic stress rise during loading and they exhibit a monotonic stress decline during unloading. In particular, {112} twin model exhibits an extremely high stress level. Irrecoverable strain occurs in all the six models, where {114} twin model possesses the largest irrecoverable strain, whereas {112} twin model has the smallest irrecoverable strain. Dislocation slip, amorphous phase and grain boundary play an important role in the formation of the irrecoverable strain. Stress-induced martensitic transformation of NiTi SMA is influenced by grain size, grain orientation, phase composition, substructure and temperature, where the phase transformation behaviour of any given grain is closely related to its adjacent environment as well. As for the {112} twin model, martensitic transformation is not induced in the grain interior, but at the grain boundaries. It can be deduced that the exceptional superelasticity of {112} twin model is not completely attributed to stress-induced martensitic transformation.
机译:基于分子动力学(MD)模拟,在原子尺度下研究了具有复杂微结构的NITI形状记忆合金(SMA)的超弹性。建立了六种代表不同微结构的模型,它们应对BG(双晶晶粒)模型,Ng(纳米晶粒)模型,Mg(混合晶粒)模型,其代表粗晶和Ng,PS(多态性结构)模型的混合物,由粗晶粒,Ng和非晶相,{114}双模型和{112}双模型组成。在拉伸应变为8%的情况下,仅NG模型呈现完美的压力高原。然而,PS模型,{114}双模型和{112}双模型显示在装载过程中单调应力升高,并且在卸载过程中表现出单调应力下降。特别地,{112}双模型表现出极高的应力水平。在所有六种模型中发生不可恢复的菌株,其中{114}双模型具有最大的无法恢复的菌株,而{112}双模型具有最小的无法恢复的菌株。位错滑,非晶相和晶界在不可恢复菌株的形成中起重要作用。 NITI SMA的应激诱导的马氏体转化受晶粒尺寸,晶粒取向,相组成,亚结构和温度的影响,其中任何给定晶粒的相变行为也与其相邻环境密切相关。至于{112}双模型,马氏体转化不会在谷物内部诱导,但在晶界。可以推断出{112}双模型的卓越超弹性并不完全归因于应力诱导的马氏体转化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号