...
首页> 外文期刊>International Journal of Mechanical Sciences >Comprehensive heat transfer performance analysis of liquid metal based nanofluid laminar flow in circular tube
【24h】

Comprehensive heat transfer performance analysis of liquid metal based nanofluid laminar flow in circular tube

机译:圆管液态金属纳米流体层流动综合传热性能分析

获取原文
获取原文并翻译 | 示例

摘要

Liquid metal based nanofluid is expected to be the ultimate coolant, however, till date a comprehensive heat transfer analysis of this fluid flow is still lacking. The paper presents the comprehensive analysis of heat transfer, entropy generation and performance evaluation of liquid metal nanofluid laminar flow in a circular tube subject to constant wall heat flux, in which the two-phase mixture model is adopted to simulate the nanofluid flow, and three types of nanoparticles (namely Alumina (Al2O3), Diamond (Diam), Carbon nanotubes (CNT)) is considered. The computational results show that, as nanoparticles volume fraction increases, the average heat transfer coefficient of Ga-Diam and Ga-CNT increases, but that of Ga-Al2O3 decreases. The corresponding total entropy generation of Ga-Diam and Ga-CNT decreases, and that of Ga-Al2O3 increases. Particularly, as Re = 1000 and alpha(p) = 0.06 the average Nusselt number of nanofluids Ga-CNT, Ga-Diam and Ga-Al2O3 relative to that of pure liquid metal Ga are increased by 17.3%, 16.1% and - 2.1%, respectively. In general, the liquid metal based nanofluid with high concentration carbon nanotubes nanoparticles is a better choice for heat transfer enhancement, however, from the view point of energy utilization efficiency low concentration nanoparticles is more suitable.
机译:液态金属基纳米流体预计是最终的冷却剂,然而,直到迄今为止这种流体流动的综合传热分析仍然缺乏。本文介绍了传热,熵生成和液态金属纳米流体层流动在圆形管中的循环纳米流体流动的综合分析,以恒定的壁热通量,采用两相混合物模型模拟纳米流体流动,以及三个考虑纳米颗粒的类型(即氧化铝(Al 2 O 3),金刚石(直径),碳纳米管(CNT))。计算结果表明,随着纳米颗粒体积分数的增加,Ga-Dial和Ga-CNT的平均传热系数增加,但Ga-Al2O3的差异降低。 Ga-Dial和Ga-CNT的相应总熵产生降低,并且Ga-Al2O3的增加增加。特别是,作为Re = 1000和α(P)= 0.06 = 0.06相对于纯液态金属GA相对于纯液态金属GA的纳米流体Ga-CNT,Ga-径和Ga-Al2O3的平均冲泡数增加17.3%,16.1%和-2.1% , 分别。通常,具有高浓度碳纳米管纳米颗粒的液态金属纳米流体是热传递增强的更好选择,然而,从能量利用效率的观点来看,低浓度纳米颗粒更合适。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号