...
首页> 外文期刊>International Journal of Mechanical Sciences >Benchmark solution for buckling of thick rectangular transversely isotropic plates under biaxial load
【24h】

Benchmark solution for buckling of thick rectangular transversely isotropic plates under biaxial load

机译:双轴荷载下厚矩形横向各向同性板屈曲的基准解决方案

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an analytical solution for elastic buckling problems of thick rectangular transversely isotropic simply supported plates subjected to uniaxial or biaxial uniformly distributed in-plane load, one of which could also be tensile. Governing equations are simplified to two partial differential equations using displacement potential functions (DPF) which are solved using the separation of variables method with exact satisfaction of boundary conditions. The presented solution is applicable to any plate with no restriction on its thickness ratio and also to any composite plates which have the same in-plane mechanical properties in all directions of the plate. Obtained results for critical buckling loads are compared with other analytical results for thin and moderately thick, and with numerical results for thick plates which show excellent agreement between them. Then, the effects of loading conditions aspect and thickness ratios for four transversely isotropic materials and also the engineering constants on the buckling of plates are discovered. The results show that the presented method is applicable and reliable for various kinds of material properties, thickness ratios, and loading conditions. Results also show that in comparison with a uniaxially loaded plate, adding a compressive load in second direction decreases the critical buckling load and the plate buckles in lower modes, while for adding a tensile load it is vice versa. Among materials engineering constants, in-plane modulus of elasticity and transverse shear module have the most effects on the critical buckling load of plates. (C) 2017 Elsevier Ltd. All rights reserved.
机译:本文介绍了厚矩形横向各向同性的弹性屈曲问题的分析解决方案,其经受单轴或双轴均匀分布在面内载荷的厚板,其中一个也可以是拉伸的。使用位移势函数(DPF)简化了两个部分微分方程,其使用变量方法的分离解决了边界条件的精确满足。所提出的解决方案适用于任何没有限制其厚度比的板,也适用于任何在板的各个方向上具有相同面内机械性能的任何复合板。与薄且中等厚的其他分析结果进行比较了关键屈曲载荷的结果,以及厚板的数值结果,这些结果显示它们之间的良好协议。然后,发现了四种横向各向同性材料的装载条件和厚度比以及板上屈曲的工程常数的影响。结果表明,呈现的方法适用于各种材料性质,厚度比和装载条件可靠。结果还表明,与单轴装载的板相比,在第二方向上添加压缩载荷会降低临界屈曲负载,并且在较低模式下扣环,同时添加拉伸载荷,它反之亦然。在材料工程常数中,弹性的面内模量和横剪模块对板的关键屈曲负荷具有最大的影响。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号