...
首页> 外文期刊>International Journal of Mechanical Sciences >Feasibility analysis of the replacement of the actual machining surface by 3D numerical simulation rough surface
【24h】

Feasibility analysis of the replacement of the actual machining surface by 3D numerical simulation rough surface

机译:3D数值模拟粗糙表面替换实际加工表面的可行性分析

获取原文
获取原文并翻译 | 示例

摘要

Most of the current studies on the surface morphology only focus the Gaussian random rough surfaces, however, there are many non-Gaussian random rough surfaces with some skewness and kurtosis in practical engineering. In this paper, a theoretical simulation method of the non-Gauss surface is built considering the surface morphology characteristics of the actual parts. Firstly, a three-dimension (3D) surface profilometer is used to measure the surface profile of the actual grinding and milling parts, and the morphology characteristics for the surface profile are obtained by the data representation. Secondly, the non-Gauss simulation surface is generated by the Fast Fourier Transform (FFT), the Johnson conversion system, and the autocorrelation function, which correspond to the surface features of the actual machined surface. Thirdly, the reverse engineering technology is used to generate the surface model and the interface contact models by taking into account the morphology features of actual machined surface and non-Gauss simulated surface, respectively. Finally, the contact models of actual surface and non-Gaussian simulated surface are analyzed by the finite element technique. Results show that the change laws of the fitting curve for the pressure-displacement and the displacement-contact area percentage between the actual machined surface and the non-Gaussian simulated surface are almost the same. At the same time, the mean errors of the contact pressure for the non-Gauss simulated surface and the actual machined surface are 7.57% (grinding) and 8.56% (milling), respectively, and the mean errors of the contact area percentage in different contact states are 8.84%, 9.38%, 7.99% (grinding) and 9.13%, 5.21%, 7.99% (milling), respectively. Because the comparison errors of the two angles are within 10%, the contact performance of the non-Gauss numerical simulation surface and the actual machined surface of the parts is almost equal, which certifies the feasibility of the substitution between the two kinds of surfaces. This paper provides an effective method for the digital characterization and simulation of the surface morphology of parts.
机译:大多数目前对表面形态学的研究只关注高斯随机粗糙表面,然而,在实际工程中存在许多非高斯随机粗糙表面,具有一些偏离和峰度。在本文中,考虑了实际部件的表面形态特征,构建了非高斯表面的理论模拟方法。首先,三维(3D)表面轮廓仪用于测量实际研磨和铣削部件的表面轮廓,并且通过数据表示获得表面轮廓的形态特性。其次,非高斯模拟表面由快速傅里叶变换(FFT),Johnson转换系统和自相关函数产生,其对应于实际加工表面的表面特征。第三,逆向工程技术分别考虑了实际加工表面和非高斯模拟表面的形态特征来产生表面模型和接口联系方式。最后,通过有限元技术分析了实际表面和非高斯模拟表面的接触型号。结果表明,实际加工表面与非高斯模拟表面之间的压力位移和位移接触面积百分比的拟合曲线的变化规律几乎相同。同时,非高斯模拟表面和实际加工表面的接触压力的平均误差分别为7.57%(研磨)和8.56%(铣削),并且接触面积的平均误差不同接触状态分别为8.84%,9.38%,7.99%(研磨)和9.13%,5.21%,7.99%(铣削)。因为两角度的比较误差在10%以内,所以非高斯数值模拟表面的接触性能和部件的实际加工表面几乎相等,这是认证两种表面之间取代的可行性。本文提供了一种有效的数字表征和模拟零件表面形态的模拟方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号