首页> 外文期刊>International Journal of Mechanical Sciences >Mixed convection heat transfer and entropy generation of Cu-water nanofluid in wavy-wall lid-driven cavity in presence of inclined magnetic field
【24h】

Mixed convection heat transfer and entropy generation of Cu-water nanofluid in wavy-wall lid-driven cavity in presence of inclined magnetic field

机译:在倾斜磁场存在下波纹覆盖驱动腔中Cu水纳米流体的混合对流传热和熵产生

获取原文
获取原文并翻译 | 示例
           

摘要

An investigation is performed into the effects of an inclined magnetic field on the mixed convection heat transfer characteristics and entropy generation in a nanofluid-filled lid-driven cavity with a wavy surface. The heat energy transport processes within the cavity are visualized by plotting the energy flux vectors. The simulations investigate the effects of the Hartmann number, Richardson number, volume fraction of nanoparticles, inclination angle of the applied magnetic field, wave amplitude of the wavy surface, Reynolds number, and irreversibility distribution ratio on the energy flux vectors, mean Nusselt number, total entropy generation, and Bejan number. The range of the studied parameters is as follows: Richardson number from 10(-2) to 10(2), Reynolds number from 1 to 300, Hartmann number from 0 to 50, inclination angle of the applied magnetic field from 0 degrees to 360 degrees, nanoparticle volume fraction from 0% to 4%, wavy-surface amplitude from 0.0 to 0.7, irreversibility distribution ratio from 10(-6) to 10(0). It is shown that the energy flux vectors form large closed circulations under higher Richardson numbers and Reynolds numbers. In other words, the mean Nusselt number and total entropy generation increase with an increasing Richardson number and Reynolds number. By contrast, the size of the circulation structures reduces with an increasing Hartmann number. Hence, a larger Hartmann number gives rise to a lower mean Nusselt number and total energy generation. The mean Nusselt number and total entropy generation increase with an increasing volume fraction of nanoparticles and a larger amplitude of the wavy surface. In addition, for a given Richardson number, the mean Nusselt number and total entropy generation can be enhanced by tuning the inclination angle of the magnetic field. Finally, the Bejan number reduces with an increasing Hartmann number, a larger irreversibility distribution ratio, and a lower Richardson number.
机译:对倾斜磁场对纳米流体填充盖驱动腔中的混合对流传热特性和熵产生的效果进行了研究。通过绘制能量磁通向量来可视化腔内的热能传输过程。仿真研究了Hartmann号,Richardson号,纳米颗粒的体积分数,施加磁场的倾斜角度,波浪表面的波幅,雷诺数和不可逆分布比的影响,平均纽带数,总熵生成,和bejan号码。所研究的参数的范围如下:Richardson号码从10(-2)到10(2),雷诺数从1到300,从0到50的Hartmann编号,施加的磁场的倾斜角度从0度到360程度,纳米粒子体积分数为0%至4%,波浪表面幅度从0.0至0.7,不可逆分布比为10(-6)至10(0)。结果表明,能量通量向量在高度理查森数和雷诺数下形成大的封闭循环。换句话说,卑微的营养号和总熵产生随着Richardson号和雷诺数的增加而增加。相比之下,循环结构的尺寸随着Hartmann号的增加而减少。因此,较大的Hartmann号导致较低的平均营养数和总能量产生。纳米颗粒的增加和波浪表面的较大幅度增加,平均良好的营养数和总熵产生增加。另外,对于给定的理查森数,通过调整磁场的倾斜角度,可以提高平均的露天数和总熵生成。最后,BEJAN号码随着HARTMANN编号的增加,更大的不可逆分配比和较低的理查森数量而减少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号