...
首页> 外文期刊>International Journal of Greenhouse Gas Control >Fate of transition metals during passive carbonation of ultramafic mine tailings via air capture with potential for metal resource recovery
【24h】

Fate of transition metals during passive carbonation of ultramafic mine tailings via air capture with potential for metal resource recovery

机译:通过空气捕获在金属资源回收潜力的超空气矿尾矿被动碳化过程中的过渡金属命运

获取原文
获取原文并翻译 | 示例
           

摘要

Mineral carbonation in ultramafic mine tailings is generally accepted to be a safe and long term means of trapping and storing CO2 within the structures of minerals, but it poses the risk of releasing potentially hazardous metal contaminants from mineral wastes into the environment. Stockpiles of reactive, finely pulverised ultramafic mine tailings are ideal natural laboratories for the observation and promotion of the carbonation of Mg-silicate and Mg-hydroxide waste minerals via reaction with atmospheric or industrial CO2. However, ultramafic mine tailings commonly contain first-row transition metals (e.g., Cr, Co, Cu, Ni) in potentially toxic concentrations within the crystal structures of Mg-silicates, sulphides, and oxides. These transition metals are likely to be mobilised by mineral carbonation reactions, which require mineral dissolution to supply cations for reaction with carbon. At Woodsreef Chrysotile Mine, New South Wales, Australia, transition metals (i.e., Fe, Cr, Ni, Mn, Co, Cu) are most concentrated within minor oxides (magnetite and chromite) and trace alloys (awaruite, Ni2-3Fe and wairauite, CoFe) in serpentine tailings, however, mobilisation of transition metals appears to occur predominantly during dissolution of serpentine and brucite, which are more abundant and reactive phases, respectively. Here, we present new synchrotron X-ray fluorescence mapping data that provide insights into the mobility of first-row transition metals (Fe, Cr, Ni, Mn, Co, Cu) during weathering and carbonation of ultramafic mine tailings collected from the Woodsreef Chrysotile Mine. These data indicate that the recently precipitated carbonate minerals, hydromagnesite [Mg-5(CO3)(4)(OH)(2)center dot 4H(2)O] and pyroaurite [Mg6Fe2(CO3)(OH)(16)center dot 4H(2)O] sequester trace metals from the tailings at concentrations of 10 s-100 s of ppm, most likely via substitution for Mg or Fe within their crystal structures, or by the physical trapping of small (mu m-scale) transition-metal-rich grains (i.e., magnetite, chromite, awaruite), which are stabilised within alkaline carbonate cements. Trace transition metals are present at relatively high concentrations in the bulk tailings (i.e.,similar to 0.3 wt.% NiO and Cr2O3) and they are largely retained within the unaltered mineral assemblage. The weathering products that occur at the surface of the tailings and form a cement between grains of partially dissolved gangue minerals immobilise transition metals on spatial scales of micrometres and at comparable concentrations to those observed in the unaltered tailings. The end result is that trace metals are not present at detectable levels within mine pit waters. Our observations of metal mobility during passive carbonation suggest that mineral products of accelerated carbonation treatments are likely to sequester trace metals. Thus, accelerated carbonation is unlikely to pose an environmental risk in the form of metalliferous drainage so long as the neutralisation potential of the tailings is not exceeded.
机译:矿物碳化在超微型矿井尾矿中通常被认为是一种安全和长期的捕获和存放CO2的方法,但它构成释放潜在危险金属污染物的风险,从矿物废物中释放到环境中。反应性,精细粉碎的超空矿尾矿是理想的天然实验室,用于观察和促进Mg-硅酸盐和Mg-氢氧化物废矿物的碳酸化,通过与大气或工业二氧化碳反应。然而,ultramafic矿尾矿通常含有在Mg-硅酸盐,硫化物和氧化物的晶体结构内的潜在有毒浓度的总含有含有毒性浓度的总态过渡金属(例如,Cr,Co,Cu,Ni)。这些过渡金属可能被矿物质碳化反应调动,这需要矿物溶解,以供应与碳反应的阳离子。在Woodsreef Chrysotile Mine,新南威尔士州,澳大利亚,过渡金属(即Fe,Cr,Ni,Mn,Co,Co)最浓度在少量氧化物(磁铁矿和铬铁矿)和痕量合金(Awaruite,Ni2-3Fe和Wairauite中然而,在蛇纹石尾矿中,在蛇纹石和布鲁氏菌素的溶解期间,过渡金属的动员似乎主要发生,它们分别是更丰富和反应性的相。在这里,我们介绍了新的同步X射线荧光映射数据,该数据提供了在从木材卷曲Chrysotile收集的超空气矿山尾矿的风化和碳化期间进入一排转变金属(Fe,Cr,Ni,Mn,Co,Co,Cu)的迁移性的洞察力矿。这些数据表明,最近沉淀的碳酸盐矿物,水质岩[Mg-5(CO 3)(4)(4)(2)中心点4h(2)O]和PyrOurite [Mg6Fe2(Co3)(OH)(OH)(OH)(OH)(OH)中心点4H(2)O]螯合粉末从PPM的10S-100s浓度的尾矿中散射金属,最有可能通过晶体结构内的Mg或Fe取代,或通过小(mu m级)过渡的物理诱捕富含富含碱性碳酸盐水泥的富含富含颗粒(即磁铁矿,铬铁矿,Awaruite)。痕量过渡金属以散粒尾矿的相对高浓度存在(即,类似于0.3重量%的NiO和Cr 2 O 3),并且它们大大保留在未妨碍的矿物组合中。在尾矿表面发生的耐候产品,并在部分溶解的膨胀粒矿物质粒之间形成水泥,其固定在微量测量的空间尺度上的过渡金属,并且在不妨碍尾矿中观察到的相当浓度。最终结果是痕量金属在矿井水域内的可检测水平不存在。我们对被动碳酸化期间的金属迁移率观察表明,加速碳酸化处理的矿物产物可能会螯合痕量金属。因此,随着尾矿的中和电位不超过尾矿的中和电位,加速碳酸化不太可能以冶金排水的形式造成环境风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号