首页> 外文期刊>International Journal of Greenhouse Gas Control >A novel multi-technique approach used in the petrophysical characterization of the Maquoketa Group (Ordovician) in the southeastern portion of the Illinois Basin: Implications for seal efficiency for the geologic sequestration of CO2
【24h】

A novel multi-technique approach used in the petrophysical characterization of the Maquoketa Group (Ordovician) in the southeastern portion of the Illinois Basin: Implications for seal efficiency for the geologic sequestration of CO2

机译:伊利诺伊州盆地东南部(奥莫瓦省)岩石物理特征的一种新型多技术方法:对CO2地质封存的密封效率的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Quantifying the petrophysical properties of low-permeability sedimentary units helps to determine the possibility of upward flow of supercritical carbon dioxide when evaluating a site for safe confinement of geologic carbon storage. This research examines fine-scale pore characteristics that affect the sealing capacity of the Upper Ordovician Maquoketa interval, a thick and heterogeneous sequence of carbonates, siltstones, and clay-rich rock units in the Illinois Basin. This unit has been previously identified as a regional caprock that would likely isolate and effectively store any CO2 injected into underlying reservoirs. We applied a multi-technique approach to quantify pore-size distribution, pore surface area, porosity, permeability, and capillary entry pressure. These laboratory-based techniques include mercury porosimetry, gas adsorption, portable X-ray fluorescence, X-ray diffraction, total organic carbon analyses, and, to a lesser extent, scanning electron microscopy and petrography. In addition, we developed a lithofacies model that interpreted the combined wireline responses from multiple well locations. This model confirms that the Maquoketa Group is dominated by muddy limestone, dolomitic/calcitic shale, and silty shale. The results of these evaluations indicate that these sequences have low porosity (0.4-3.1 %) and low permeability (0.04-7.1 mD) values and capillary entry pressures adequate to inhibit invasion of supercritical CO2 driven by buoyancy forces. Laboratory results also indicate that portions of the Maquoketa Group may also function as a low-volume reservoir for CO2. That is, should super-critical CO2 migrate upward and percolate into this unit, most of the CO2 will likely be securely trapped by means of capillary mechanisms.
机译:量化低渗透性沉积单元的岩石物理特性有助于确定在评估站点以安全禁闭地质碳储存时,确定超临界二氧化碳向上流动的可能性。该研究检查了伊利诺伊州盆地上奥莫昔官摩虫岛间隔,厚度和异质碳酸盐序列的密封能力,伊利诺伊州盆地的密封能力。该单位以前已被确定为可能隔离和有效地将任何注入底层储层的二氧化碳储存和有效地存储所在的区域支架。我们应用了一种多技术方法来量化孔径分布,孔表面积,孔隙率,渗透率和毛细管进入压力。这些基于实验室的技术包括汞孔隙测定法,气体吸附,便携式X射线荧光,X射线衍射,总有机碳分析,以及较小程度,扫描电子显微镜和岩体。此外,我们开发了一种锂外模型,可以解释来自多个井位置的合并电缆响应。该模型确认了Maquoketa集团以泥泞的石灰岩,白云岩/钙质页岩和粉质页岩为主。这些评价的结果表明这些序列具有低孔隙率(0.4-3.1%)和低渗透率(0.04-7.1MD)值和毛细管进入压力足以抑制由浮力力驱动的超临界CO2的侵袭。实验室结果还表明Maquoketa组的部分也可能用作二氧化碳的低容量储层。也就是说,如果超关键二氧化碳向上迁移并渗透到该单元中,大部分CO2可能会通过毛细管机构牢固地捕获。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号