首页> 外文期刊>Advanced Powder Technology: The internation Journal of the Society of Powder Technology, Japan >Prediction of entropy generation for nanofluid flow through a triangular minichannel using neural network
【24h】

Prediction of entropy generation for nanofluid flow through a triangular minichannel using neural network

机译:使用神经网络预测流过三角形小通道的纳米流体的熵产生

获取原文
获取原文并翻译 | 示例
           

摘要

Heat transfer characteristics and second law of thermodynamics are evaluated for the water-Al2O3 nanofluid flow in a triangular minichannel under constant wall heat flux. The effects of parameters such as Reynolds number, particle size, wall heat flux, and particle concentration on entropy generation rates are investigated. By increasing the Reynolds number and the concentration and by reducing the particle size, the convective heat transfer coefficient enhances. The thermal entropy generation rate decreases when the concentration and the Reynolds number are increased, while it increases when the heat flux and the particle size are increased. However, the frictional entropy generation incorporates a trend which is totally in contrast with the thermal entropy generation. The effect of Reynolds number change on the frictional entropy generation rate is more significant than that of concentration. At higher Reynolds numbers, changing of the concentration alters the frictional entropy generation rate more significantly. By changing the particle size, the total entropy generation rate incorporates a minimum value (i.e. optimum value). The Bejan number has large values near the walls, and the effect of changing the particle size on the Bejan number is more noticeable at the greater concentrations. In addition, at the cross sections near the inlet, the Bejan number is negligible in large parts of central regions of the channel, and increases along the channel length. Based on the data obtained, the model of entropy generation rates was developed in terms of effective parameters using Artificial Neural Network (ANN). (C) 2016 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
机译:在恒定壁热通量的情况下,对三角形小通道中水-Al2O3纳米流体的传热特性和热力学第二定律进行了评估。研究了诸如雷诺数,颗粒大小,壁热通量和颗粒浓度等参数对熵产生率的影响。通过增加雷诺数和浓度并减小粒径,对流传热系数提高。当浓度和雷诺数增加时,热熵产生率降低,而当热通量和粒径增加时,热熵产生率增加。但是,摩擦熵的产生具有与热熵的产生完全相反的趋势。雷诺数变化对摩擦熵产生速率的影响比浓度影响更大。在较高的雷诺数下,浓度的变化会更显着地改变摩擦熵的产生速率。通过改变粒径,总熵产生率包含最小值(即最佳值)。 Bejan数在壁附近具有较大的值,并且在较大的浓度下更改粒径对Bejan数的影响更明显。另外,在入口附近的横截面处,Bejan数在通道中心区域的大部分中可忽略不计,并且沿通道长度增加。基于获得的数据,使用人工神经网络(ANN)根据有效参数建立了熵产生率模型。 (C)2016日本粉末技术学会。由Elsevier B.V.和日本粉末技术学会出版。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号