...
首页> 外文期刊>International journal of applied mechanics >Performance Evaluation of Troposphere Estimated from Galileo-Only Multi-Frequency Observations
【24h】

Performance Evaluation of Troposphere Estimated from Galileo-Only Multi-Frequency Observations

机译:伽利略多频率观测估计对流层的性能评估

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The tropospheric delays estimated from the Global Navigation Satellite System (GNSS) have been proven to be an efficient product for monitoring variations of water vapor, which plays an important role in meteorology applications. The operational GNSS water vapor monitoring system is currently based on the Global Positioning System (GPS) and GLObal NAvigation Satellite System(GLONASS) dual-frequency observations. The Galileo satellite navigation system has been evolving continuously, and on 11 February 2019, the constellation reached 22 active satellites, achieving a capability of standalone Precise Point Positioning (PPP) and tropospheric estimation that is global in scope. This enhancement shows a 37% improvement if the precision of the Galileo-only zenith tropospheric delay, while we may anticipate further benefits in terms of tropospheric gradients and slant delays in the future if an optimal multi-constellation and multi-frequency processing strategy is used. First, we analyze the performance of the multi-frequency troposphere estimates based on the PPP raw observation model by comparing it with the standard ionosphere-free model. The performance of the Galileo-only tropospheric solution is then validated with respect to GPS-only solution using 48 globally distributed Multi-GNSS Experiment (MGEX) stations. The averaged bias and standard deviations are -0.3 and 5.8 mm when only using GPS satellites, respectively, and 0.0 and 6.2 mm for Galileo, respectively, when compared to the International GNSS Service (IGS) final Zenith Troposphere Delay(ZTD) products. Using receiver antenna phase center corrections from the corresponding GPS dual-frequency observations does not affect the Galileo PPP ambiguity float troposphere solutions. These results demonstrate a comparable precision achieved for both Galileo-only and GPS-only ZTD solutions, however, horizontal tropospheric gradients, estimated from standalone GPS and Galileo solutions, still show larger discrepancies, mainly due to their being less Galileo satellites than GPS satellites. Including Galileo E1, E5a, E5b, and E5 signals, along with their proper observation weighting, show the benefit of multi-frequency observations, further improving the ZTD precision by 4% when compared to the dual-frequency raw observation model. Overall, the presented results demonstrate good prospects for the application of multi-frequency Galileo observations for the tropospheric parameter estimates.
机译:从全球导航卫星系统(GNSS)估计的对流层延迟已被证明是一种有效的产品,用于监测水蒸气变化,这在气象学应用中起着重要作用。操作GNSS水蒸气监测系统目前基于全球定位系统(GPS)和全球导航卫星系统(Glonass)双频率观察。伽利略卫星导航系统一直在不断发展,并于2019年2月11日,星座达到了22个活跃的卫星,实现了独立的精确点定位(PPP)和全球范围内的对流层估计的能力。如果使用伽利略的Zenith延迟的精度,这种增强率为37%的改进,而我们可能会在未来的对流层梯度和倾斜延迟方面预测进一步的益处,如果使用最佳的多星座和多频处理策略,则。首先,我们通过将其与标准的电离层的模型进行比较来分析基于PPP原始观察模型的多频对流层估计的性能。然后,使用48个全球分布的多GNSS实验(MGEx)站仅验证仅伽利略的对流层溶液的性能。与国际GNSS服务(IGS)最终Zenith对流层延迟(ZTD)产品相比,平均偏置和标准偏差分别仅使用GPS卫星分别使用GPS卫星和0.0.3和6.2 mm。使用来自相应的GPS双频观测的接收器天线相位校正不影响Galileo PPP模糊浮法对流层解决方案。这些结果表明,仅对伽利略和GPS的ZTD解决方案实现了相当的精度,然而,从独立GPS和伽利略解决方案估计的卧式对流层梯度仍然表现出更大的差异,主要是由于它们的伽利略卫星少于GPS卫星。包括伽利略E1,E5a,E5b和E5信号以及它们的适当观察加权,表明多频率观察的益处,与双频原始观察模型相比,进一步将ZTD精度提高4%。总体而言,所呈现的结果表明了对对流层参数估计的多频伽利略观测应用的良好前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号