...
首页> 外文期刊>International Journal for Numerical Methods in Fluids >Finite element and implicit Runge-Kutta implementation of an acoustics-convection upstream resolution algorithm for the time-dependent two-dimensional Euler equations
【24h】

Finite element and implicit Runge-Kutta implementation of an acoustics-convection upstream resolution algorithm for the time-dependent two-dimensional Euler equations

机译:有限元和隐式runge-Kutta实现时间依赖性二维欧拉方程的声学 - 对流上游分辨率算法

获取原文
获取原文并翻译 | 示例

摘要

The second of a two-paper series, this paper details a solver for the characterisfics-bias system from the acoustics-convection upstream resolution algorithm for the Euler and Navier-Stokes equations. An integral formulation leads to several Surface integrals that allow effective enforcement of boundary conditions. Also presented is a new multi-dimensional procedure to enforce a pressure boundary condition at a Subsonic outlet, a procedure that remains accurate and stable. A classical finite element Galerkin discretization of the integral formulation on any prescribed grid directly yields an optimal discretely conservative upstream approximation for the Euler and Navier-Stokes equations, an approximation that remains multi-dimensional independently of the orientation of the reference axes and computational cells. The time-dependent discrete equations are then integrated in time via an implicit Runge-Kutta procedure that in this paper is proven to remain absolutely non-linearly stable for the spatially-discrete Euler and Navier-Stokes equations and shown to converge rapidly to steady states, with maximum Courant number exceeding 100 for the linearized version. Even on relatively coarse grids, the acoustics-convection Upstream resolution algorithm generates essentially non-oscillatory Solutions for Subsonic, transonic and supersonic flows, encompassing oblique- and interacting-shock fields that converge within 40 time steps and reflect reference exact Solutions. Copyright (c) 2005 John Wiley & Sons, Ltd.
机译:本文的第二种两幅纸张系列,详细介绍了来自欧拉和Navier-Stokes方程的声学 - 对流上游解析算法的特征性偏置系统的求解器。整体配方导致几个表面积分,允许有效地执行边界条件。还提出了一种新的多维过程,用于在亚音速插座处强制压力边界条件,该过程保持准确且稳定。任何规定网格上的整体配方的古典有限元Galerkin的Galerkin离散化直接产生欧拉和Navier-Stokes方程的最佳离散的上游近似,这是独立于参考轴和计算单元的方向保持多维的近似。然后,时间依赖的离散方程通过隐式跳动-Kutta程序纳入时间,这篇论文被证明是对空间 - 离散的欧拉和Navier-Stokes方程保持绝对线性稳定,并显示为迅速地收敛到稳定状态,最大坐落号超过线性化版本。即使在相对粗略的电网上,声学 - 对流上游分辨率算法也基本上产生了基本上非振荡的解决方案,用于括号,跨音和超声波流动,包括在40次时间步长内收敛的倾斜和交互的区域,并反映参考精确解决方案。版权所有(c)2005 John Wiley&Sons,Ltd。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号