...
首页> 外文期刊>Integrative and Comparative Biology >Muscle Function from Organisms to Molecules
【24h】

Muscle Function from Organisms to Molecules

机译:来自生物到分子的肌肉功能

获取原文
获取原文并翻译 | 示例
           

摘要

Gaps in our understanding of muscle contraction at the molecular level limit the ability to predict in vivo muscle forces in humans and animals during natural movements. Because muscles function as motors, springs, brakes, or struts, it is not surprising that uncertainties remain as to how sarcomeres produce these different behaviors. Current theories fail to explain why a single extra stimulus, added shortly after the onset of a train of stimuli, doubles the rate of force development. When stretch and doublet stimulation are combined in a work loop, muscle force doubles and work increases by 50% per cycle, yet no theory explains why this occurs. Current theories also fail to predict persistent increases in force after stretch and decreases in force after shortening. Early studies suggested that all of the instantaneous elasticity of muscle resides in the cross-bridges. Subsequent cross-bridge models explained the increase in force during active stretch, but required ad hoc assumptions that are now thought to be unreasonable. Recent estimates suggest that cross-bridges account for only similar to 12% of the energy stored by muscles during active stretch. The inability of cross-bridges to account for the increase in force that persists after active stretching led to development of the sarcomere inhomogeneity theory. Nearly all predictions of this theory fail, yet the theory persists. In stretch-shortening cycles, muscles with similar activation and contractile properties function as motors or brakes. A change in the phase of activation relative to the phase of length changes can convert a muscle from a motor into a spring or brake. Based on these considerations, it is apparent that the current paradigm of muscle mechanics is incomplete. Recent advances in our understanding of giant muscle proteins, including twitchin and titin, allow us to expand our vision beyond cross-bridges to understand how muscles contribute to the biomechanics and control of movement.
机译:在我们对分子水平的肌肉收缩的理解中的差距限制了在自然运动中预测人类和动物体内肌肉力的能力。由于肌肉发挥为电机,弹簧,制动器或支柱,因此不确定的不确定因素仍然是如何产生这些不同行为的不确定性。目前的理论未能解释为什么一个额外的刺激,在刺激列车的发作后不久增加,使力量发育率加倍。当拉伸和双击刺激在工作回路中组合时,肌肉力加倍和工作每个周期增加50%,但没有理论解释为什么发生这种情况。当前的理论也未能在缩短后在拉伸和力减小后的力量持续增加。早期研究表明,肌肉的所有瞬时弹性都存在于交叉桥中。随后的跨桥模型解释了活跃伸展期间的力量增加,但现在认为现在被认为是不合理的特殊假设。最近的估计表明,交叉桥接账户仅在主动伸展期间仅肌肉存储的能量的12%。交叉桥的无能为止,在主动拉伸后持续存在的力量增加导致萨拉米德的不均匀性理论的发展。几乎所有关于这个理论的预测失败,但理论仍然存在。在拉伸缩短循环中,具有类似激活和收缩特性的肌肉作为电动机或制动器。相对于长度变化相的激活阶段的变化可以将来自电机的肌肉转换为弹簧或制动器。基于这些考虑,显然是肌肉力学的当前范式不完整。我们对巨型肌肉蛋白质的理解的最新进展,包括Twitchin和Titin,让我们扩大我们的愿景,以了解跨桥梁,了解肌肉如何促进生物力学和对运动的控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号