...
首页> 外文期刊>Integrative and Comparative Biology >The Importance of a Filament-like Structure in Aerial Dispersal and the Rarefaction Effect of Air Molecules on a Nanoscale Fiber: Detailed Physics in Spiders' Ballooning
【24h】

The Importance of a Filament-like Structure in Aerial Dispersal and the Rarefaction Effect of Air Molecules on a Nanoscale Fiber: Detailed Physics in Spiders' Ballooning

机译:丝状分散在空中分散中的丝状结构和空气分子稀疏效应的重要性:蜘蛛膨胀的详细物理

获取原文
获取原文并翻译 | 示例
           

摘要

Many flying insects utilize a membranous structure for flight, which is known as a "wing." However, some spiders use silk fibers for their aerial dispersal. It is well known that spiders can disperse over hundreds of kilometers and rise several kilometers above the ground in this way. However, little is known about the ballooning mechanisms of spiders, owing to the lack of quantitative data. Recently, Cho et al. discovered previously unknown information on the types and physical properties of spiders' ballooning silks. According to the data, a crab spider weighing 20 mg spins 50-60 ballooning silks simultaneously, which are about 200nm thick and 3.22m long for their flight. Based on these physical dimensions of ballooning silks, the significance of these filament-like structures is explained by a theoretical analysis reviewing the fluid-dynamics of an anisotropic particle (like a filament or a high-slender body). (1) The filament-like structure is materially efficient geometry to produce (or harvest, in the case of passive flight) fluiddynamic force in a low Reynolds number flow regime. (2) Multiple nanoscale fibers are the result of the physical characteristics of a thin fiber, the drag of which is proportional to its length but not to its diameter. Because of this nonlinear characteristic of a fiber, spinning multiple thin ballooning fibers is, for spiders, a better way to produce drag forces than spinning a single thick spider silk, because spiders can maximize their drag on the ballooning fibers using the same amount of silk dope. (3) The mean thickness of fibers, 200 nm, is constrained by the mechanical strength of the ballooning fibers and the rarefaction effect of air molecules on a nanoscale fiber, because the slip condition on a fiber could predominate if the thickness of the fiber becomes thinner than 100 nm.
机译:许多飞行昆虫利用膜质结构进行飞行,被称为“翼”。然而,一些蜘蛛使用丝纤维来进行空中分散。众所周知,蜘蛛可以通过数百千克分散数百千克,以这种方式在地上上升几公里。然而,由于缺乏定量数据,对蜘蛛的膨胀机构知之甚少。最近,Cho等人。发现了有关蜘蛛膨胀丝网的类型和物理性质的未知信息。根据数据,同时重20毫克旋转50-60件的螃蟹蜘蛛,其飞行约为200毫米,长3.22米。基于这些膨胀丝的这些物理尺寸,通过审查各向异性颗粒的流体动力学(如丝或高细长体)的理论分析来解释这些丝状结构的重要性。 (1)丝状结构是实质有效的几何形状,以在低雷诺数流动状态下产生(或在被动飞行的情况下收获)流体动力。 (2)多纳米透视纤维是薄纤维的物理特性的结果,其阻力与其长度成比例,但不是其直径。由于纤维的这种非线性特性,纺丝多个薄的膨胀纤维是蜘蛛,更好的方法来生产拖曳力的旋转,而不是旋转单个厚蜘蛛丝,因为蜘蛛可以使用相同量的丝绸最大化它们在球囊纤维上的拖动涂料。 (3)纤维的平均厚度为200nm,受到膨胀纤维的机械强度和空气分子对纳米透视纤维的稀疏作用的约束,因为纤维上的滑移条件如果纤维的厚度变为纤维​​尺寸优势比100nm更薄。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号