首页> 外文期刊>Atmospheric chemistry and physics >Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds
【24h】

Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds

机译:云凝结核和冰核颗粒对混合相形云中沉淀过程和过冷液体的影响

获取原文
获取原文并翻译 | 示例
           

摘要

How orographic mixed-phase clouds respond to the change in cloud condensation nuclei (CCN) and ice nucleating particles (INPs) are highly uncertain. The main snow production mechanism in warm and cold mixed-phase orographic clouds (referred to as WMOCs and CMOCs, respectively, distinguished here as those having cloud tops warmer and colder than -20 °C) could be very different. We quantify the CCN and INP impacts on supercooled water content, cloud phases, and precipitation for a WMOC case and a CMOC case, with sensitivity tests using the same CCN and INP concentrations between the WMOC and CMOC cases. It was found that deposition plays a more important role than riming for forming snow in the CMOC case, while the role of riming is dominant in the WMOC case. As expected, adding CCN suppresses precipitation, especially in WMOCs and low INPs. However, this reverses strongly for CCN of 1000 cm~(-3) and larger. We found a new mechanism through which CCN can invigorate mixed-phase clouds over the Sierra Nevada and drastically intensify snow precipitation when CCN concentrations are high (1000 cm~(-3) or higher). In this situation, more widespread shallow clouds with a greater amount of cloud water form in the Central Valley and foothills west of the mountain range. The increased latent heat release associated with the formation of these clouds strengthens the local transport of moisture to the windward slope, invigorating mixed-phase clouds over the mountains, and thereby producing higher amounts of snow precipitation. Under all CCN conditions, increasing the INPs leads to decreased riming and mixed-phase fraction in the CMOC as a result of liquid-limited conditions, but has the opposite effects in the WMOC as a result of ice-limited conditions. However, precipitation in both cases is increased by increasing INPs due to an increase in deposition for the CMOC but enhanced riming and deposition in the WMOC. Increasing the INPs dramatically reduces supercooled water content
机译:形状混合相云如何响应云凝结核(CCN)和冰核颗粒(INPS)的变化是高度不确定的。温暖和冷混合相形云的主要雪生产机制(分别称为WMOCs和CMOCs,在此区分为云层较温暖,较冷于-20°C)可能非常不同。我们量化CCN和INP对WMOC壳体和CMOC壳体的过冷水含量,云阶段和降水的影响,具有使用相同的CCN和WMOC和CMOC案例之间的敏感性测试。发现沉积比在CMOC壳体中形成雪的比较,沉积起到更重要的作用,而上升沿在WMOC壳体中的作用是显着的。正如预期的那样,添加CCN抑制沉淀,特别是在WMOC和低INPS中。然而,这对于1000cm〜(-3)和更大的CCN强烈反转。我们发现了一种新的机制,CCN可以在塞拉尼亚达举办混合相云,当CCN浓度高时(1000cm〜(3)或更高)时,剧烈加剧雪降沉淀。在这种情况下,更广泛的浅云在中央山谷和山脉以西的山麓山谷中具有更大的云水形式。与这些云形成相关的潜热释放增加,加强了对迎风斜面的局部水分运输,在山上振动混合相云,从而产生较高量的雪地降水。在所有CCN条件下,由于液体限制条件,增加了INPS导致CMOC中的升温和混合相位减少,但由于冰条件,WMOC在WMOC中具有相反的效果。然而,由于CMOC的沉积增加而增加,两种情况下的沉淀增加,但在WMOC中增强了灵敏度和沉积。增加Inps显着降低过冷却水含量

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号