首页> 外文期刊>Atmospheric chemistry and physics >Quantifying the effect of aerosol on vertical velocity and effective terminal velocity in warm convective clouds
【24h】

Quantifying the effect of aerosol on vertical velocity and effective terminal velocity in warm convective clouds

机译:量化气溶胶对温暖对流云中垂直速度和有效终端速度的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Better representation of cloud-aerosol interactions is crucial for an improved understanding of natural and anthropogenic effects on climate. Recent studies have shown that the overall aerosol effect on warm convective clouds is non-monotonic. Here, we reduce the system' dimensions to its center of gravity (COG), enabling distillation and simplification of the overall trend and its temporal evolution. Within the COG framework, we show that the aerosol effects are nicely reflected by the interplay of the system's characteristic vertical velocities, namely the updraft (omega) and the effective terminal velocity (eta). The system's vertical velocities can be regarded as a sensitive measure for the evolution of the overall trends with time. Using a bin-microphysics cloud-scale model, we analyze and follow the trends of the aerosol effect on the magnitude and timing of omega and eta, and therefore the overall vertical COG velocity. Large eddy simulation (LES) model runs are used to upscale the analyzed trends to the cloud-held scale and study how the aerosol effects on the temporal evolution of the field' thermodynamic properties are reflected by the interplay between the two velocities. Our results suggest that aerosol effects on air vertical motion and droplet mobility imply an effect on the way in which water is distributed along the atmospheric column. Moreover, the interplay between omega and eta predicts the overall trend of the field's thermodynamic instability. These factors have an important effect on the local energy balance.
机译:更好地表示云气溶胶相互作用对于改善对气候的自然和人为影响的改善至关重要。最近的研究表明,对热对流云的总体气溶胶作用是非单调的。在这里,我们将系统的尺寸减少到其重心(COG)的尺寸,从而能够蒸馏和简化整体趋势及其时间演化。在COG框架内,我们表明气溶胶效应很好地反映了系统特征垂直速度的相互作用,即上升流(OMEGA)和有效终端速度(ETA)。系统的垂直速度可以被视为与时间的整体趋势的演变的敏感措施。使用Bin-microphysics云规模模型,我们分析和遵循气溶胶影响的趋势对欧米茄和ETA的幅度和时序,因此是整体垂直齿轮速度。大涡模拟(LES)模型运行用于高档分析的趋势,以云保持的规模,研究如何通过两个速度之间的相互作用来研究对现场热力学性质的时间演变的气溶胶效应。我们的研究结果表明,气溶胶对空气垂直运动和液滴流动的影响意味着对沿着大气柱分布的方式的影响。此外,欧米茄和ETA之间的相互作用预测了该领域热力学不稳定的整体趋势。这些因素对局部能量平衡具有重要影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号