首页> 外文期刊>Atmospheric Measurement Techniques >A new aerosol flow reactor to study secondary organic aerosol
【24h】

A new aerosol flow reactor to study secondary organic aerosol

机译:一种新的气溶胶流量反应器,用于研究二次有机气溶胶

获取原文
获取原文并翻译 | 示例
           

摘要

Gas-particle equilibrium partitioning is a fundamental concept used to describe the growth and loss of secondary organic aerosol (SOA). However, recent literature has suggested that gas-particle partitioning may be kinetically limited, preventing volatilization from the aerosol phase as a result of the physical state of the aerosol (e.g. glassy, viscous). Experimental measurements of diffusion constants within viscous aerosol are limited and do not represent the complex chemical composition observed in SOA (i.e. multicomponent mixtures). Motivated by the need to address fundamental questions regarding the effect of the physical state and chemical composition of a particle on gas-particle partitioning, we present the design and operation of a newly built 0.3 m(3) continuous-flow reactor (CFR), which can be used as a tool to gain considerable insights into the composition and physical state of SOA. The CFR was used to generate SOA from the photo-oxidation of alpha-pinene, limonene, beta-caryophyllene and toluene under different experimental conditions (i.e. relative humidity, VOC and VOC/NOx ratios). Up to 10(2) mg of SOA mass was collected per experiment, allowing the use of highly accurate compositional- and single-particle analysis techniques, which are not usually accessible due to the large quantity of organic aerosol mass required for analysis. A suite of offline analytical techniques was used to determine the chemical composition and physical state of the generated SOA, including attenuated total reflectance infrared spectroscopy; carbon, hydrogen, nitrogen, and sulfur (CHNS) elemental analysis; H-1 and H-1-C-13 nuclear magnetic resonance spectroscopy (NMR); ultra-performance liquid chromatography ultra-high-resolution mass spectrometry (UHRMS); high-performance liquid chromatography ion-trap mass spectrometry (HPLC-ITMS); and an electrodynamic balance (EDB). The oxygen-to-carbon (O/C) and hydrogen-to-carbon (H/C) ratios of generated SOA samples (determined using a CHNS elemental analyser) displayed good agreement with literature values and were consistent with the characteristic Van Krevelen diagram trajectory, with an observed slope of -0.41. The elemental composition of two SOA samples formed in separate replicate experiments displayed excellent reproducibility, with the O/C and H/C ratios of the SOA samples observed to be within error of the analytical instrumentation (instrument accuracy similar to 0.15% to a reference standard). The ability to use a highly accurate CHNS elemental analyser to determine the elemental composition of the SOA samples allowed us to evaluate the accuracy of reported SOA elemental compositions using UHRMS (a commonly used technique). In all of the experiments investigated, the SOA O/C ratios obtained for each SOA sample using UHRMS were lower than the O/C ratios obtained from the CHNS analyser (the more accurate and non-selective technique). The average difference in the Delta O/C ratios ranged from 19% to 45% depending on the SOA precursor and formation conditions. alpha-pinene SOA standards were generated from the collected SOA mass using semi-preparative HPLC-ITMS coupled to an automated fraction collector, followed by H-1 NMR spectroscopy. Up to 35.8 +/- 1.6% (propagated error of the uncertainty in the slope of the calibrations graphs) of alpha-pinene SOA was quantified using this method; a considerable improvement from most previous studies.
机译:气体粒子平衡分配是用于描述二次有机气溶胶(SOA)的生长和丧失的基本概念。然而,最近的文献表明,由于气溶胶的物理状态(例如玻璃状,粘性)的结果,气体颗粒分配可能是动力学限制,防止来自气溶胶相的挥发(例如玻璃状,粘性)。粘性气溶胶内扩散常数的实验测量有限,不代表在SOA(即多组分混合物中)观察到的复杂化学组合物。有必要解决关于颗粒对气体颗粒分配的物理状态和化学成分的影响的基本问题,我们介绍了新建的0.3M(3)连续流动反应器(CFR)的设计和操作,可以用作工具,以获得对SOA的组成和物理状态的相当大的见解。在不同的实验条件下,CFR用于从α-叉烯,柠檬烯,β-亚氰基甲烯和甲苯的光氧化产生SOA(即相对湿度,VOC和VOC / NOx比率)。每次实验收集最多10(2)毫克的SOA质量,允许使用高精度的组成和单颗粒分析技术,这通常不会由于分析所需的大量有机气溶胶质量而获得。用于确定所生成的SOA的化学成分和物理状态的套件,包括减弱的总反射率红外光谱;碳,氢气,氮和硫(CHN)元素分析; H-1和H-1-C-13核磁共振光谱(NMR);超高效液相色谱超高分辨率质谱(UHRMS);高效液相色谱离子阱质谱(HPLC-ITMS);和电动平衡(EDB)。产生的SOA样本的氧 - 碳(O / C)和碳(H / C)比率(使用CHNS元素分析仪测定)与文学价值观吻合了良好的一致性,并且与特征范krevelen图一致轨迹,观察到的斜率为-0.41。在单独的复制实验中形成的两个SOA样本的元素组成显示出优异的再现性,并且SOA样本的O / C和H / C比率在分析仪器的误差内(仪器精度与参考标准类似的仪器精度类似于0.15% )。使用高精度CHN元素分析仪来确定SOA样品的元素组成的能力使我们能够使用UHRMS(常用技术)评估报告的SOA元素组合物的准确性。在研究的所有实验中,使用UHRMS对每个SOA样品获得的SOA O / C比率低于来自CHN分析仪(更准确的和非选择性技术)的O / C比率。取决于SOA前体和形成条件,Delta O / C比率的平均差异为19%至45%。使用与自动馏分收集器联合的半制备型HPLC-ITMS从收集的SOA质量产生α-脊烯SOA标准物,其次是H-1 NMR光谱。使用该方法量化了α-脊烯SOA的高达35.8 +/- 1.6%(在校准图中的不确定性的传播误差);来自最前一项研究的相当大改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号