首页> 外文期刊>Applied Ocean Research >Neumann-Michell theory-based multi-objective optimization of hull form for a naval surface combatant
【24h】

Neumann-Michell theory-based multi-objective optimization of hull form for a naval surface combatant

机译:基于Neumann-Michell理论的船体战斗机的多目标优化

获取原文
获取原文并翻译 | 示例
       

摘要

A numerical multi-objective optimization procedure is proposed here to describe the development and application of a practical hydrodynamic optimization tool, OPTShip-SJTU. Three components including hull form modification module, hydrodynamic performance evaluation module and optimization module consist of this tool. The free-form deformation (FFD) method and shifting method are utilized as parametric hull surface modification techniques to generate a series of realistic hull forms subjected to geometric constraints, and the Neumann-Michell (NM) theory is implemented to predict the wave drag. Moreover, NSGA-II, a muti-objective genetic algorithm, is adopted to produce pareto-optimal front, and kriging model is used for predicting the total resistance during the optimization process to reduce the computational cost. Additionally, the analysis of variance (ANOVA) method is introduced to represent the influence of each design variable on the objective functions. In present work, a surface combatant DTMB Model 5415 is used as the initial design, and optimal solutions with obvious drag reductions at specific speeds are obtained. Eventually, three of optimal hulls are analyzed by NM theory and a RANS-based CFD solver naoe-FOAM-SJTU respectively. Numerical results confirm the availability and reliability of this multi-objective optimization tool. (C) 2017 Elsevier Ltd. All rights reserved.
机译:这里提出了一种数值多目标优化程序来描述实用的流体动力优化工具,OptShip-SJTU的开发和应用。包括船体形式修改模块,流体动力性能评估模块和优化模块的三个组件包括此工具。自由形式变形(FFD)方法和移位方法用作参数船体表面修改技术,以产生经受几何约束的一系列现实船体形式,并且实现了Neumann-Michell(NM)理论以预测波拖动。此外,采用NSGA-II,Muti-Home遗传算法生产普通最佳前部,并且Kriging模型用于预测优化过程中的总电阻,以降低计算成本。另外,引入了方差分析(ANOVA)方法以表示每个设计变量对目标函数的影响。在目前的工作中,表面战斗机DTMB型号5415用作初始设计,获得了在特定速度下显着减阻的最佳解决方案。最终,通过NM理论和基于RAN的CFD Solver Nao-FoAM-SJTU分析了三种最佳船体。数值结果证实了这种多目标优化工具的可用性和可靠性。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Applied Ocean Research》 |2017年第2017期|共13页
  • 作者单位

    Shanghai Jiao Tong Univ Collaborat Innovat Ctr Adv Ship &

    Deep Sea Explor Sch Naval Architecture Ocean &

    Civil Engn State Key Lab Ocean Engn Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Collaborat Innovat Ctr Adv Ship &

    Deep Sea Explor Sch Naval Architecture Ocean &

    Civil Engn State Key Lab Ocean Engn Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Collaborat Innovat Ctr Adv Ship &

    Deep Sea Explor Sch Naval Architecture Ocean &

    Civil Engn State Key Lab Ocean Engn Shanghai 200240 Peoples R China;

    Shanghai Jiao Tong Univ Collaborat Innovat Ctr Adv Ship &

    Deep Sea Explor Sch Naval Architecture Ocean &

    Civil Engn State Key Lab Ocean Engn Shanghai 200240 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 海洋学;
  • 关键词

    OPTShip-SJTU; Multi-objective optimization; NSGA-II algorithm; Neumann-Michell theory; Wave drag;

    机译:Optship-SJTU;多目标优化;NSGA-II算法;Neumann-Michell理论;波拖;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号