首页> 外文期刊>Arabian journal of geosciences >Numerical appraisal of rock mass anisotropy effect on elastic deformations of a circular tunnel
【24h】

Numerical appraisal of rock mass anisotropy effect on elastic deformations of a circular tunnel

机译:岩体各向异性对圆形隧道弹性变形的数值评价

获取原文
获取原文并翻译 | 示例
           

摘要

The paper describes effects of anisotropic mechanical properties of rock masses on elastic behaviour of a circular tunnel under both hydrostatic and non-hydrostatic in situ stress states. This study is based on field data obtained from two actual case studies. In both cases, the rock masses have transversely isotropic structures. Hence, a 2D finite element modelling based on the equivalent continuum approach is used for the analysis. The tunnel deformation behaviour has been investigated for both isotropic and transversely isotropic conditions. To evaluate the degree of anisotropy of rock mass, an "anisotropy index" and a "normalized displacement ratio" have been defined. The effect of orientation of the isotropic planes is further investigated. The results show that in a hydrostatic stress state, the maximum displacement always occurs in a direction perpendicular to the isotropic planes. In this case, three empirical equations have been developed to compute the normalized displacement ratio, the deviation, and the direction of displacement vector at any arbitrary point on the tunnel periphery. The results further show that if the anisotropy index increases, the displacement difference (the difference between the maximum and the minimum displacements) on the tunnel walls increases too. For the non-hydrostatic stress state, simultaneous effects of stress ratio, anisotropy index, and orientation of isotropic planes on normalized displacements have been investigated. In this case, the location of maximum displacement inclines towards the direction of major principal stress. This effect is more noticeable when the isotropic planes are oriented at an angle of 90 degrees relative to the direction of the major principal stress. The paper also provides an empirical equation to determine the location of maximum displacement on the tunnel walls. Finally, the practical application of the results is further illustrated by an actual case study.
机译:本文描述了岩体各向异性力学性能对静水和非静静压下循环隧道的弹性行为的影响。本研究基于从两个实际案例研究获得的现场数据。在这两种情况下,岩体具有横向各向同性结构。因此,基于等效连续方法的2D有限元建模用于分析。已经研究了各向同性和横向各向同性条件的隧道变形行为。为了评估岩体的各向异性程度,已经定义了“各向异性指数”和“归一化排量比”。进一步研究了各向同性平面的取向的影响。结果表明,在静液压应力状态下,最大位移总是发生在垂直于各向同性平面的方向上。在这种情况下,已经开发了三个经验方程来计算隧道外围的任何任意点的归一化位移比,位移载体的偏差和位移载体方向。结果进一步表明,如果各向异性指数增加,隧道壁上的位移差异(最大和最小位移之间的差异也增加。对于非静水压应力状态,研究了应力比,各向异性指数和各向同性平面的取向对正常化位移的同时效应。在这种情况下,最大位移的位置倾向于主要主应力的方向。当各向同性平面以相对于主要主应力的方向以90度的角度定向时,这种效果更明显。本文还提供了一种经验方程,以确定隧道墙上的最大位移的位置。最后,通过实际案例研究进一步说明了结果的实际应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号