...
首页> 外文期刊>Aquatic Microbial Ecology >Nitrogen cycling and bacterial community structure of sinking and aging diatom aggregates
【24h】

Nitrogen cycling and bacterial community structure of sinking and aging diatom aggregates

机译:氮循环和衰老硅藻聚集体的氮循环和细菌群落结构

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Sinking phycodetrital aggregates can contribute to anaerobic nitrogen turnover as they may represent oxygen-depleted microbial hot spots in otherwise oxygenated waters. However, the dynamics of anaerobic nitrogen cycling during the long descent of aggregates through oxic or hypoxic waters are unknown. Thus, model aggregates prepared from the diatom Skeletonema marinoi were allowed to age for 4 d at high and low ambient O-2 levels (70 and 15% air saturation, respectively), and changes in nitrogen transformations and microbial community structure were followed. At both O-2 levels, denitrification and dissimilatory NO3- reduction to NO2 (DNRN) were the most important processes of aggregate-associated anaerobic nitrogen cycling. However, at 70% air saturation, rates of anaerobic N cycling were lower and decayed towards 0 after an early rise, whereas at 15% air saturation, they remained constantly high at average production rates of 0.66 nmol N-2-N aggregate (aggr.)(-1) h(-1) and 0.26 nmol NO2- aggr.(-1) h(-1). At both O-2 levels, but more pronouncedly at 70% air saturation, the microbial community underwent succession as expressed by an increase in (1) relative abundance of specific bacterial taxonomic units; (2) bacterial diversity; and (3) prokaryotic abundance. Probably, a higher carbon oxidation rate at high ambient O-2 level progressively selected for microbes capable of using complex carbon polymers. Taken together, the occurrence of anoxic aggregate centers may be ephemeral at high ambient O-2 levels, but persistent at low ambient O-2 levels, indicating that sinking phycodetrital aggregates can remain sinks for bioavailable N in the oceans for several days, especially in O-2-depleted settings.
机译:下沉的植物分子聚集体可以有助于厌氧氮转换,因为它们可以在否则氧化水中代表氧耗尽的微生物热点。然而,通过氧化物或缺氧水长度的聚集体长期下降期间的厌氧氮循环的动态是未知的。因此,在高温和低环境O-2水平(分别为70%和15%的空气饱和),允许从硅藻骨髓MARININI中制备的模型聚集体(分别为70%和15%的空气饱和),并且遵循氮转化和微生物群落结构的变化。在O-2水平中,脱氮和脱盐NO3-降低至NO2(DNRN)是骨料相关的厌氧氮循环的最重要的过程。然而,在70%的空气饱和度下,厌氧N循环的速率较低并衰减在早期升高后朝向0,而在15%的空气饱和度下,它们仍然在0.66nmol n-2-n骨料的平均生产率持续高(empl 。)( - 1)H(-1)和0.26 nmol no2- agg。( - 1)H(-1)。在O-2水平,但在70%的空气饱和度下更加发音,微生物群体的继承是由(1)相对丰富的特异性细菌分类单位的增加; (2)细菌多样性; (3)原核丰富。可能,在高环境O-2水平下逐渐选择较高的碳氧化速率,用于逐渐选择能够使用复合碳聚合物的微生物。占据在一起,缺氧聚集中心的发生可能是高环境O-2水平的短暂性,但在低环境o-2水平下持续存在,表明浮霉素聚集体的沉没可以在海洋中的生物可利用率n下沉几天,特别是O-2耗尽的设置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号