首页> 外文期刊>Animal Feed Science and Technology >Study of the chemical composition of Urochloa brizantha using the SPAD index, neural networks, multiple linear models, principal components and cluster analysis
【24h】

Study of the chemical composition of Urochloa brizantha using the SPAD index, neural networks, multiple linear models, principal components and cluster analysis

机译:使用Spad指数,神经网络,多线性模型,主成分和聚类分析研究Urochloa Brizantha的化学成分研究

获取原文
获取原文并翻译 | 示例
       

摘要

The objectives of this study were to explore the relationship between plant variables using correlation and principal component analysis; to explore the chemical composition patterns in a subgroup of plants using cluster analysis; and to compare the prediction ability between a linear model using only the SPAD index as a predictor with multiple linear regression and neural networks with the SPAD index, morphological and climatic measurements as predictors of the chemical composition of Urochloa brizantha leaves and stems. The experimental design was in blocks (three blocks) with five treatments, totaling 15 experimental units. Chlorophyll measurements and forage sampling were performed every 28 d. The variables used in the statistical analysis were: percentage of leaves, stems and dead plant material; plant height; relative chlorophyll (SPAD); percentage of acid detergent fibre in leaves and stems (ADF.L, ADF.S); percentage of neutral detergent fibre in leaves and stems (NDF.L, NDF.S); lignin percentage in leaves and stems (LIG.L, LIG.S); and nitrogen content in leaves and stems (N.L, N.S). The climatic variables were monthly average minimum and maximum temperatures and monthly rainfall. The correlation between SPAD with N.L and N.S was 0.56 and 0.49, respectively, and between N.L with N.S was 0.87. The correlation between the observed and predicted responses using simple linear regression, with SPAD as the predictor, ranged from 0.198 for ADF.L to 0.577 for N.L. However, the correlations ranged from 0.497 for LIG.L to 0.759 for N.S when multiple regression was used with other predictors, besides SPAD. The prediction accuracy using neural networks ranged from 0.501 for LIG.L to 0.863 for N.S and was higher than multiple regression for all characteristics except LIG.L and LIG.S. Principal component analysis efficiently condensed the most important information of the 13 original variables measured in the plants into three principal components due to the redundancy of information of the variables. According to the cluster analysis, plants with higher nitrogen content in their leaves and stems presented lower fibre contents and dead plant material, and were denser than those with lower nitrogen content. Multiple linear regression can be used to predict lignin content in leaves and stems and neural networks must be used to predict nitrogen and the other fibre contents. SPAD is an important predictor of nitrogen content in tropical pastures, but it is not the only predictor that must be used in regression models and neural networks; morphological characteristics and climatic conditions increase the prediction accuracy of the models.
机译:本研究的目标是利用相关性和主成分分析探索植物变量之间的关系;使用聚类分析探讨植物亚组中的化学成分模式;并使用仅使用SPAD指数作为具有多元线性回归和神经网络的预测性的预测能力,其具有备向指数的多元线性回归和神经网络,作为尿精Brizantha叶和茎的化学成分的预测因子。实验设计含有五种治疗的块(三块),总共15个实验单元。每28天进行叶绿素测量和饲料采样。统计分析中使用的变量是:叶,茎和死植物材料的百分比;植物高度;相对叶绿素(Spad);叶片和茎中酸洗涤剂纤维的百分比(ADF.L,ADF.S);叶子和茎中中性洗涤剂纤维的百分比(NDF.L,NDF.S);木质素百分比在叶子和茎(Lig.l,lig.s);和叶片和茎中的氮含量(N.L,N.S)。气候变量是每月平均最低和最高温度和每月降雨。与N.1和N.S之间的表格之间的相关性分别为0.56和0.49,并且在N.S之间的N.S为0.87。使用简单的线性回归的观察和预测响应之间的相关性,用SPAD作为预测器,范围为0.198,对于N.L为0.577。然而,除了SPAD之外,当与其他预测因子一起使用时,对于N的关系,对于N次,相关性范围为0.497。使用神经网络的预测精度范围为0.501的Lig.L至0.863,对于N.S,高于Lig.L和Lig.S的所有特征的多元回归。主要成分分析有效地缩合了在植物中测量的13个原始变量的最重要信息,这是由于变量信息的信息冗余而在三个主成分中。根据聚类分析,其叶片和茎中具有较高氮含量的植物呈下纤维内容物和死植物材料,并且比氮含量较低的植物。多元线性回归可用于预测叶片中的木质素含量,茎和茎和神经网络必须用于预测氮和其他纤维内容物。 Spad是热带牧场中氮含量的重要预测因子,但它不是必须在回归模型和神经网络中使用的唯一预测因子​​;形态学特性和气候条件提高了模型的预测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号