首页> 外文期刊>ACS catalysis >Quantification on Degradation Mechanisms of Polymer Electrolyte Membrane Fuel Cell Catalyst Layers during an Accelerated Stress Test
【24h】

Quantification on Degradation Mechanisms of Polymer Electrolyte Membrane Fuel Cell Catalyst Layers during an Accelerated Stress Test

机译:在加速应力测试过程中定量聚合物电解质膜燃料电池催化剂层降解机制

获取原文
获取原文并翻译 | 示例
       

摘要

The long-term durability of the catalyst layers of a low-working temperature fuel cell such as a polymer electrolyte membrane fuel cell (PEMFC) is of significant scientific interest because of their operation criteria and high initial cost. Identification of degradation mechanisms quantitatively during an accelerated stress test (AST) is essential for assessing and improving the durability of such catalyst layers. In this study, we present a quantitative analysis of the degradation mechanisms such as (i) electronic connectivity loss due to carbon support corrosion, (ii) proton connectivity loss due to ionomer/catalyst interface loss, (iii) catalyst loss due to dissolution or detachment, and (iv) physical surface area loss due to particle growth that is responsible for the electrochemical surface area (ECSA) loss in Pt-based catalyst layers for PEMFCs during an AST performed through potential cycling (linear sweep cyclic voltammetry) between 0.4 and 1.6 V for 7000 cycles in Ar-saturated 1 M H_(2)SO_(4). Using a half-membrane electrode assembly (half-MEA), where a gas diffusion electrode with genuine three-phase boundaries is used as a working electrode through a solid electrolyte, we have observed the ECSA loss due to ionomer/catalyst interface loss and identified a catalyst heterogeneous degradation pattern during an AST. Results suggest a significant ECSA loss due to catalyst isolation (~64% of ECSA loss) from loss of electron and proton connectivities by catalyst support corrosion (~45%) and ionomer/catalyst interface loss (~19%), followed by particle growth (~30%) and dissolution/detachment (6%). Such knowledge and methodology can effectively contribute to catalyst material screening and electrode structure development to advance the PEMFC technology.
机译:诸如聚合物电解质膜燃料电池(PEMFC)的低工作温度燃料电池的催化剂层的长期耐久性由于其操作标准和高初始成本,具有重要的科学兴趣。在加速应力测试(AST)期间定量地定量地识别降解机制(AST)对于评估和改善这种催化剂层的耐久性至关重要。在这项研究中,我们提出了对由于碳溶液腐蚀引起的(i)电子连接损失的降解机制的定量分析,(ii)由于离聚物/催化剂界面损失引起的质子连通性损失,(III)催化剂损失或由于溶解而导致的催化剂损失由于颗粒生长导致的脱离(IV)物理表面积损失,其在AST期间对PEMFC的PEMFCS的PT基催化剂层中的电化学表面积(ECSA)损失负责,通过电位循环(线性扫描循环伏安)在0.4和1.6 V在Ar饱和1 m H_(2)SO_(4)中为7000个循环。使用半膜电极组件(半部MEA),其中通过固体电解质使用具有真正三相边界的气体扩散电极作为工作电极,我们观察到由于离聚物/催化剂界面损失而导致的ECSA损失并识别AST期间的催化剂非均相降解图案。结果表明,由于催化剂支持腐蚀(〜45%)和离聚物/催化剂界面损失(约45%)和离聚物/催化剂界面损失(〜19%),引起催化剂分离(〜64%的ECSA损失)引起的显着ECSA损失(〜30%)和溶解/脱离(6%)。这种知识和方法可以有效地促进催化剂材料筛选和电极结构显影,以推进PEMFC技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号