...
首页> 外文期刊>BioSystems >Modelling 18O2 and 16O2 unidirectional fluxes in plants: II. Analysis of Rubisco evolution
【24h】

Modelling 18O2 and 16O2 unidirectional fluxes in plants: II. Analysis of Rubisco evolution

机译:模拟植物中的18O2和16O2单向通量:II。 Rubisco演变分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The studies of Rubisco characteristics observed during plant evolution show that the variation of the Rubisco specificity factor only improved by two times from cyanobacteria to modern C3 plants. However we note important variations of the ratio between the maximum rates of oxygenation and carboxylation (V_O/V_C). Modelling in vivo ~(18)O_2 data in plant gas exchange shows that the oxygenation reaction of Rubisco plays a regulating role when the photochemical energy exceeds the carboxylation capacity. A protective index 'oxygenation capacity' is postulated, related to the ratio V_O/V_C of Rubisco, and hence to the sink energy effect of photorespiration. Analysing the trends of Rubisco parameters along the evolutionary scale, we show: (1) the increase of both V_C and V_O; (2) the enhancement of CO_2 affinity; and (3) the rise in oxygenation capacity at the expense of the CO_2 specificity. Hence, the factors of evolutionary pressure have not only directed the enzyme towards a more efficient utilisation of CO_2, but mainly to positively use the unavoidable great loss of energy and assimilated carbon in the process of photorespiration. These observations reinforce the hypothesis of plant-atmosphere co-evolution and of the complex role of Rubisco, which seems to be selected to develop both better CO_2 affinity and oxygenation capacity. The latter increases the capacity of sink of photorespiration, in particular, during water stress or under high irradiance, the two conditions experienced by plants in terrestrial environments. These observations help to explain some handicaps of C4 plants, and the supremacy of CAM and C3 perennial higher plants in arid environments.
机译:在植物进化过程中观察到的Rubisco特性的研究表明,从蓝细菌到现代C3植物,Rubisco特异性因子的变化仅改善了两倍。但是,我们注意到最大氧化速率和羧化速率(V_O / V_C)之比的重要变化。在植物气体交换中的体内〜(18)O_2数据建模表明,当光化学能超过羧化能力时,Rubisco的氧化反应起调节作用。假定保护指数“氧化能力”与Rubisco的比率V_O / V_C有关,因此与光呼吸的吸收能效应有关。分析Rubisco参数沿演化尺度的趋势,我们发现:(1)V_C和V_O均增加; (2)增强CO_2亲和力; (3)以CO_2的特异性为代价提高了氧化能力。因此,进化压力的因素不仅使酶更有效地利用了CO_2,而且还主要是在光呼吸过程中积极利用不可避免的能量和同化碳的巨大损失。这些观察结果加强了植物-大气共同进化和Rubisco的复杂作用的假设,Rubisco似乎被选择为发展更好的CO_2亲和力和充氧能力。后者增加了光呼吸的吸收能力,特别是在水分胁迫或高辐照度下,这是植物在陆地环境中遇到的两种条件。这些观察结果有助于解释C4植物的一些障碍,以及干旱环境中CAM和C3多年生高等植物的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号