首页> 外文期刊>Agricultural and Forest Meteorology >Simulating the effects of chronic ozone exposure on hydrometeorology and crop productivity using a fully coupled crop, meteorology and air quality modeling system
【24h】

Simulating the effects of chronic ozone exposure on hydrometeorology and crop productivity using a fully coupled crop, meteorology and air quality modeling system

机译:使用完全耦合作物,气象和空气质量造型系统模拟慢性臭氧暴露对水质气象和作物生产率的影响

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, the Noah-Multiparameterization with Crop land surface model in the Weather Research and Forecasting (WRF) with Chemistry (WRF/Chem) model is modified to include the effects of chronic ozone exposure (COE) on plant conductance and photosynthesis (PCP) found from field experiments. Based on the modified WRF/Chem, the effects of COE on regional hydrometeorology and crop productivity have been investigated over the central United States. Our results indicate that the model in its current configuration can reproduce the rainfall and temperature patterns of the observations and reanalysis data, although it overestimates rainfall. The model underestimates daily maximum 8-hour average ozone concentrations by 4–7?ppb compared with ozone observations from the Clean Air Status and Trend Network. The experimental tests on the effects of COE include setting different thresholds of ambient ozone concentrations ([O3]) and using linear regressions to quantify PCP against the COE. Compared with the WRF/Chem control run (i.e., without considering the effects of COE), the modified model at different experimental setups consistently improves the simulated estimates of rainfall and temperatures. The simulations in June, July, August, and September of 2009–2014 show that, over crop lands, surface [O3] decrease latent heat fluxes (LH) by 9 to 11?W/m2, increase surface air temperatures (T2) by 0.6 to 0.7?°C with the daily maximum temperature increasing up to 1?°C, and decrease rainfall by 0.15 to 0.21?mm per day by mostly reducing convective rainfall. Additionally, surface [O3] decrease crop yields by 18–23%, decrease Gross Primary Productivity (GPP) by 30%–38% in a domain average and up to 50% in some areas, and decrease crop yields by 30–45%, all of which highly depends on the precise experimental setup, especially the [O3] threshold. The mechanism producing these results is also discussed. Employing this modified WRF/Chem model in any high [O3] region can more precisely elucidate the interactions of vegetation, meteorology, chemistry/emissions, and crop productivity.
机译:在本研究中,用化学(WRF / Chem)模型的天气研究和预测(WRF)与作物土地表面模型的Noah-Multiparameter化被修饰,包括慢性臭氧暴露(COE)对植物电导和光合作用的影响(PCP )从现场实验中发现。基于改性的WRF / Chem,在美国中部地区已经研究了COE对区域水文气象和作物生产率的影响。我们的结果表明,其当前配置的模型可以再现观察和再分析数据的降雨和温度模式,尽管它高估降雨。与清洁空气状态和趋势网络的臭氧观测相比,该模型低估了每日最大8小时平均臭氧浓度4-7°PPB。对COE效应的实验试验包括设定不同的环境臭氧浓度([O3])并使用线性回归来定量COE的PCP。与WRF / Chem控制运行(即,不考虑COE的效果)相比,不同实验设置的修改模型一致地提高了降雨和温度的模拟估计。 2009 - 2014年6月,7月,8月和9月的模拟表明,在作物陆地上,表面[o3]将潜热通量(LH)降低9至11°W / m 2,增加表面空气温度(T2)每日最高温度为0.6至0.7°C,每天增加1?°C,每天减少0.15至0.21Ω米,主要减少对流降雨。另外,表面[O3]将作物产量降低18-23%,将总初级生产率(GPP)降低30%-38%,在某些区域的域平均值,高达50%,并减少30-45%的作物产量,所有这些都高度取决于精确的实验设置,尤其是[O3]阈值。还讨论了产生这些结果的机制。在任何高[O3]区域中采用这种改进的WRF / Chem模型可以更精确地阐明植被,气象,化学/排放和作物生产率的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号