...
首页> 外文期刊>Agricultural and Forest Meteorology >Variability and bias in active and passive ground-based measurements of effective plant, wood and leaf area index
【24h】

Variability and bias in active and passive ground-based measurements of effective plant, wood and leaf area index

机译:有效植物,木材和叶面积指数的主动和被动地基测量中的变异性和偏差

获取原文
获取原文并翻译 | 示例
           

摘要

In situ leaf area index (LAI) measurements are essential to validate widely-used large-area or global LAI products derived, indirectly, from satellite observations. Here, we compare three common and emerging ground-based sensors for rapid LAI characterisation of large areas, namely digital hemispherical photography (DHP), two versions of a widely-used commercial LAI sensor (LiCOR LAI-2000 and 2200), and terrestrial laser scanning (TLS). The comparison is conducted during leaf-on and leaf-off conditions at an unprecedented sample size in a deciduous woodland canopy. The deviation between estimates of these three ground-based instruments yields differences greater than the 5% threshold goal set by the World Meteorological Organization. The variance at sample level is reduced when aggregated to plot scale (1 ha) or site scale (6 ha). TLS shows the lowest relative standard deviation in both leaf-on (11.78%) and leaf-off (13.02%) conditions. Whereas the relative standard deviation of effective plant area index (ePAI) derived from DHP relates closely to us in leaf-on conditions, it is as large as 28.14-29.74% for effective wood area index (eWAI) values in leaf-off conditions depending on the thresholding technique that was used. ePAI values of TLS and LAI-2x00 agree best in leaf-on conditions with a concordance correlation coefficient (CCC) of 0.796. In leaf-off conditions, eWAI values derived from DHP with Ridler and Calvard thresholding agrees best with TLS. Sample size analysis using Monte Carlo bootstrapping shows that TLS requires the fewest samples to achieve a precision better than 5% for the mean +/- standard deviation. We therefore support earlier studies that suggest that TLS measurements are preferential to measurements from instruments that are dependent on specific illumination conditions. A key issue with validation of indirect estimates of LAI is that the true values are not known. Since we cannot know the true values of LAI, we cannot quantify the accuracy of the measurements. Our radiative transfer simulations show that ePAI estimates are, on average, 27% higher than eLAI estimates. Linear regression indicated a linear relationship between eLAI and ePAI-eWAI (R-2 = 0.87), with an intercept of 0.552 and suggests that caution is required when using LAI estimates.
机译:原位叶面积指数(LAI)测量对于验证广泛使用的大面积或全球赖产品是必不可少的,间接地从卫星观测到衍生。在这里,我们比较三种常见的基于地面的基于基于地面的传感器,用于大面积的快速赖丽,即数字半球形摄影(DHP),两种版本的广泛使用的商用LAI传感器(Lictor Lai-2000和2200)和陆地激光扫描(TLS)。在落叶和叶状条件下进行比较,以落叶林地树冠处于前所未有的样本量。这三个基于基于一个仪器的估计之间的偏差产生了世界气象组织设定的5%阈值目标的差异。当聚合到绘制尺度(1公顷)或站点比例(6公顷)时,样品水平的差异减小。 TLS显示出叶片(11.78%)和叶子脱落(13.02%)条件下最低的相对标准偏差。鉴于DHP的有效植物区域指数(EPAI)的相对标准偏差在叶子条件下与我们密切相关,因此在叶子条件下的有效木材区域指数(EWAI)值均大约28.14-29.74%关于使用的阈值化技术。 TLS和LAI-2X00的EPAI值在叶片条件下达到最佳,具有0.796的一致性相关系数(CCC)。在叶形条件下,源自DHP的Ewai值与Ridler和Calvard阈值平衡均使用TLS同意。使用Monte Carlo Bootstrappation的样本量分析表明,TLS需要最少的样本来实现比平均+/-标准偏差的精度优于5%。因此,我们支持早期的研究表明TLS测量优先于从依赖于特定的照明条件的仪器测量。具有赖赖间接估计的关键问题是真正的值尚不清楚。由于我们无法知道LAI的真实值,因此我们无法量化测量的准确性。我们的辐射转移模拟表明,EPAI估计平均比Elai估计值高27%。线性回归指示Elai和Epai-Ewai(R-2 = 0.87)之间的线性关系,截距为0.552,并表明使用LAI估计时需要注意。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号