首页> 外文期刊>Agricultural and Forest Meteorology >Incorporating diffuse radiation into a light use efficiency and evapotranspiration model: An 11-year study in a high latitude deciduous forest
【24h】

Incorporating diffuse radiation into a light use efficiency and evapotranspiration model: An 11-year study in a high latitude deciduous forest

机译:将漫射辐射掺入轻使用效率和蒸发蒸腾模型:在高层落叶林中进行11年的研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The fraction of diffuse photosynthetic active radiation (PAR) reaching the land surface is one of the biophysical factors regulating carbon and water exchange between terrestrial ecosystems and the atmosphere. This is especially relevant for high latitude ecosystems, where cloudy days are prevalent. Without considering impacts of diffuse PAR, traditional 'top-down' models of ecosystem gross primary productivity (GPP) and evapo-transpiration (ET), which use satellite remote sensing observations, are biased towards clear sky conditions. This study incorporated a cloudiness index (CI), an index for the fraction of diffuse PAR, into a Joint 'top-down' model that uses the same set of biophysical constraints to simulate GPP and ET for a high latitude temperate deciduous forest. To quantify the diffuse PAR effects, CI along with other environmental variables derived from an eleven year eddy covariance data set were used to statistically explore the independent and joint effects of diffuse PAR on GPP, ET, incident light use efficiency (LUE), evaporative fraction (EF) and ecosystem water use efficiency (WUE). The independent and joint effects of CI were compared from global sensitivity analysis of the 'top-down' models. Results indicate that for independent effects, CI increased GPP, LUE, ET, EF and WUE. Analysis of joint effects shows that CI mainly interacted with the radiation intercepted in the canopy (PAR, net radiation and leaf area index) to influence GPP, ET and WUE. Moreover, Ta and vapor pressure saturation deficit played a major role for the joint influence of CI on LUE and EF. In the growing season from May to October, variation in CI accounts for 11.9%, 3.0% and 7.8% of the total variation of GPP, ET and transpiration, respectively. As the influence of CI on GPP is larger than that on ET, this leads to an increase in WUE with CI. Joint GPP and ET model results showed that when including CI, the root mean square errors (RMSE) of daily GPP decreased from 1.64 to 1.45 g C m(-2) d(-1) (11.7% reduction) and ET from 15.79 to 14.50 W m(-2) (8.2% reduction). Due to the interaction of diffuse PAR with plant canopies, the largest model improvements using CI for GPP and ET occurred during the growing season and for the transpiration component, as suggested by comparisons to sap flow measurements. Furthermore, our study suggests a potential biophysical mechanism, not considered in other studies: under high diffuse PAR conditions, due to the increased longwave emission from clouds, canopy temperature gets higher and enhances GPP and transpiration in this temperature-limited high latitude ecosystem.
机译:弥漫性光合活性辐射(PAR)的一部分达到土地表面是调节陆地生态系统与大气之间的碳和水交换的生物物理因素之一。这与高纬度生态系统特别相关,多云天普遍。在不考虑漫反放的影响,传统的“自上而下”模型的生态系统初级生产力(GPP)和使用卫星遥感观察的蒸发蒸腾(et)偏向清晰的天空条件。该研究掺入了浑浊指数(CI),该指数是扩散分数的索引,进入使用相同一组生物物理限制的联合的“自上而下”模型来模拟GPP和ET进行高纬度温带落叶林。为了量化漫反射效应,CI以及来自11年涡年协方差数据集的其他环境变量用于统计探索GPP,ET,入射光使用效率(LUE),蒸发级分的漫反射率(EF)和生态系统用水效率(WUE)。将CI的独立和关节效应与“自上而下”模型的全局敏感性分析进行比较。结果表明,对于独立效应,CI增加了GPP,Lue,ET,EF和WUE。关节效果的分析表明,CI主要与截止冠层(PAR,净辐射和叶区域指数)中截取的辐射相互作用,以影响GPP,ET和WUE。此外,TA和蒸汽压力饱和度缺陷对CI对LUE和EF的关节影响发挥了重要作用。从5月到10月的生长季节,CI的变异分别占GPP,ET和蒸腾的总变化的11.9%,3.0%和7.8%。由于CI对GPP的影响大于ET上的影响,这导致CI的WUE增加。联合GPP和ET模型结果表明,当包括CI时,每日GPP的根均方误差(RMSE)从1.64降至1.45g C m(-2)d(-1)(减少11.7%)和等于15.79 14.50 W m(-2)(减少8.2%)。由于与植物檐篷的弥漫杆相互作用,在生长季节和蒸腾部件期间,使用CI对GPP和ET的最大模型改进,如通过对SAP流量测量的比较所示。此外,我们的研究表明,在其他研究中不考虑的潜在生物物理机制:在高漫射局部条件下,由于云的长波排放增加,冠层温度升高并增强了这种温度限制的高纬度生态系统中的GPP和蒸腾。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号