...
首页> 外文期刊>ACS Sustainable Chemistry & Engineering >Preparation of N-Doped Supercapacitor Materials by Integrated Salt Templating and Silicon Hard Templating by Pyrolysis of Biomass Wastes
【24h】

Preparation of N-Doped Supercapacitor Materials by Integrated Salt Templating and Silicon Hard Templating by Pyrolysis of Biomass Wastes

机译:通过聚集的盐模板和硅硬膜溶解的生物质废物的制备N-掺杂的超级电容器材料

获取原文
获取原文并翻译 | 示例

摘要

For safe disposal and environmentally benign recycling, lignocellulosic biomass wastes are increasingly studied for use as precursors for the preparation of value-added porous carbon materials. However, conventional chemical vapor deposition is time consuming and difficult to perform on a large scale. Herein, we obtained nitrogen-doped porous carbon materials (NPCMs) with high supercapacitor performance by one-pot copyrolysis of a carbon precursor (wheat straw), nitrogen precursor (melamine), and salt templating (mixed salt of KCl/ZnCl2 at 51:49). The NPCM with 7.78% nitrogen content exhibited an excellent gravimetric capacitance of 223.9 F g(-1), which is mainly attributed to the increase in surface area by the activation of salt templating and the decrease in ion-transport resistance by N doping of the NPCM. The removal of silicon in pyrolysis products efficiently enhanced the capacitance of materials, but there was a negative effect on capacitance if the silicon was removed from feedstocks before pyrolysis. The post-removal of the silicon greatly increased the cycle stability of NPCMs and maintained 91.4% of capacitance after 10,000 CV tests. BET and XPS analyses indicate that the silicon can improve the pore structure and facilitate the formation of reactive nitrogen species (N-5 and N-6) by hard template and catalysis functions during pyrolysis, which is mainly responsible for the high performance of as-prepared NPCM. This study provides a facile method for synthesizing biomass-based NPCMs, especially to utilize biomass waste that contains high silicon content.
机译:为了安全处理和环境良性回收,越来越多地研究木质纤维素生物质废物作为制备增值多孔碳材料的前体。然而,传统的化学气相沉积是耗时且难以在大规模上执行的耗时。在此,通过碳前体(小麦秸秆),氮前体(三聚氰胺)和盐模板(Kcl / ZnCl2的混合盐为51:51: 49)。具有7.78%的氮含量的NPCM具有223.9f g(-1)的优异重量电容,主要归因于通过激活盐模板的表面积增加,并通过n掺杂的离子传输阻力降低NPCM。在热解产品中除去硅有效增强了材料的电容,但如果在热解之前从原料中除去硅,则对电容存在负面影响。硅后去除大大提高了NPCMS的循环稳定性,并在10,000个CV测试后保持了91.4%的电容。 BET和XPS分析表明,硅可以通过在热解期间通过硬模板和催化函数改善反应性氮物质(N-5和N-6)的形成,这主要负责为高性能准备的NPCM。该研究提供了一种用于合成基于生物质的NPCM的体积,特别是利用含有高硅含量的生物质废物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号