首页> 外文期刊>ACS Sustainable Chemistry & Engineering >Life-Cycle Greenhouse Gas and Water Intensity of Cellulosic Biofuel Production Using Cholinium Lysinate Ionic Liquid Pretreatment
【24h】

Life-Cycle Greenhouse Gas and Water Intensity of Cellulosic Biofuel Production Using Cholinium Lysinate Ionic Liquid Pretreatment

机译:使用苯酚溶酶离子液体预处理使用纤维素生物燃料生产生命周期温室气体和水强度

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

src="http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/ascecg/2017/ascecg.2017.5.issue-11/acssuschemeng.7b02116/20171031/images/medium/sc-2017-02116x_0007.gif">Cellulosic biofuels present an opportunity to meet a significant fraction of liquid transportation fuel demand with renewable, low-carbon alternatives. Certain ionic liquids (ILs) have proven effective at facilitating hydrolysis of lignocellulose to produce fermentable sugars with high yields. Although their negligible vapor pressure and low flammability make ILs attractive solvents at the point of use, their life-cycle environmental impacts have not been investigated in the context of cellulosic biorefineries. This study provides the first life-cycle greenhouse gas (GHG) and water use inventory for biofuels produced using IL pretreatment. We explore two corn stover-to-ethanol process configurations: the conventional water-wash (WW) route and the more recently developed integrated high gravity (iHG) route, which eliminates washing steps after pretreatment. Our results are based on the use of a representative IL, cholinium lysinate ([Ch][Lys]). We find that the WW process results in unacceptably high GHG emissions. The iHG process has the potential to reduce GHG emissions per megajoule of fuel by ~45% relative to gasoline if [Ch][Lys] is used. Use of a protic IL with comparable performance to [Ch][Lys] could achieve GHG reductions up to 70–85%. The water intensities of the WW and iHG processes are both comparable to those of other cellulosic biofuel technologies.
机译:src =“http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/ suscecg/2017/ socececg.2017.5.issue-11/acssuschemeng.7b02116/20171031/images/medium/sc -2017-02116x_0007.gif“>纤维素生物燃料呈现出满足可再生,低碳替代品的大量液体运输燃料需求的机会。已经证明某些离子液体(ILS)有效地促进木质纤维素的水解,以产生具有高产率的可发酵糖。虽然它们可忽略不计的蒸气压和低易燃性使ILS在使用点中具有吸引力的溶剂,但在纤维素生物料理的背景下尚未研究其生命周期的环境影响。本研究提供了使用IL预处理生产的生物燃料的第一生命周期温室气体(GHG)和水使用库存。我们探索两种玉米秸秆 - 乙醇处理配置:传统的水洗(WW)途径以及最近开发的集成高重(IHG)途径,可消除预处理后的洗涤步骤。我们的结果基于代表性IL的使用,氯吡啶鎓([CH] [Lys])。我们发现WW进程导致了不可接受的高气排放。如果使用[CH] [Lys],IHG工艺有可能将每Megajoule燃料的温室气体排放量减少〜45%,如果使用[CH] [Lys]。使用具有与[CH] [LYS]相当的性能的质子IL可以达到高达70-85%的温室气体。 WW和IHG工艺的水强度均与其他纤维素生物燃料技术相媲美。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号