首页> 外文期刊>ACS Sustainable Chemistry & Engineering >Thermal Stability of an in Situ Exsolved Metallic Nanoparticle Structured Perovskite Type Hydrogen Electrode for Solid Oxide Cells
【24h】

Thermal Stability of an in Situ Exsolved Metallic Nanoparticle Structured Perovskite Type Hydrogen Electrode for Solid Oxide Cells

机译:固体氧化物细胞的原位exsolved金属纳米粒子结构钙钛矿型氢电极的热稳定性

获取原文
获取原文并翻译 | 示例
       

摘要

In this work, thermal stability of an in situ exsolved Ni-Fe nanoparticle structured Sr2Fe1.4Ni0.1Mo0.5O6 (SFMNi) perovskite type hydrogen electrode is studied by examining the evolution of electrode polarization resistance and material morphology. During the 745-h durability testing, the polarization resistance measured at 800 degrees C dramatically decreases from 0.68 to 0.31 Omega cm(2) with an activation rate of 22.92%/100 h in the initial 200 h, then undergoes a stable period in the following 200 h, and subsequently rises to 0.40 Omega cm(2) with a degradation rate of 6.20%/100 h in the last 345 h. Variation of electrode electrochemical performance could be explained by the morphology evolution of the exsolved nanoparticles, which are well-fitted by the self-limiting growth model. Distribution of relaxation time analysis results indicate that gas conversion is the primary rate-limiting step during the electrode reaction and can be effectively accelerated by the gradually exsolved Ni-Fe nanoparticles during the durability testing. Additionally, higher temperature results in a shorter equilibrium time, which can be explained by the accelerated thermodynamic and kinetic properties of the in situ exsolution process because of the lowered Gibbs free energy at higher temperature. The approach developed in this study could be used to predict the lifetime of the in situ metallic nanoparticle structured electrode and provide a significant insight into the development of other ceramic materials with high activity and robust stability for solid oxide cell application.
机译:在这项工作中,通过检查电极偏振耐药性和材料形态的演变,研究了原位exsolve Ni-Fe纳米颗粒结构SR2FE1.4NI0.1MO0.5O6(SFMNI)钙钛矿型氢电极的热稳定性。在745-H耐久性测试期间,在800摄氏度下测量的偏振电阻从0.68至0.31ωCM(2)显着降低,其在初始200小时内激活速率为22.92%/ 100小时,然后在稳定的时期进行在200小时之后,随后在过去345小时内降解率为6.20%/ 100小时的0.40兆厘米(2)。通过自限制生长模型的exsolved纳米颗粒的形态学,可以解释电极电化学性能的变化。弛豫时间分析的分布结果表明,气体转化是电极反应过程中的主要速率限制步骤,并且可以在耐久性测试期间通过逐渐溢出的Ni-Fe纳米颗粒有效地加速。另外,较高的温度导致较短的平衡时间,这可以通过在较高温度下降低的Gibbs自由能量的原位输出过程的加速热力学和动力学性能来解释。该研究中开发的方法可用于预测原位金属纳米颗粒结构化电极的寿命,并对具有高活性和坚固的固体氧化物电池施用的稳定稳定性提供了对其他陶瓷材料的发展的显着洞察。

著录项

  • 来源
  • 作者单位

    Wuhan Univ Sch Power &

    Mech Engn Key Lab Hydraul Machinery Transients Minist Educ Wuhan 430072 Hubei Peoples R China;

    Wuhan Univ Sch Power &

    Mech Engn Key Lab Hydraul Machinery Transients Minist Educ Wuhan 430072 Hubei Peoples R China;

    Wuhan Univ Sch Power &

    Mech Engn Key Lab Hydraul Machinery Transients Minist Educ Wuhan 430072 Hubei Peoples R China;

    Wuhan Univ Sch Power &

    Mech Engn Key Lab Hydraul Machinery Transients Minist Educ Wuhan 430072 Hubei Peoples R China;

    Wuhan Univ Sch Power &

    Mech Engn Key Lab Hydraul Machinery Transients Minist Educ Wuhan 430072 Hubei Peoples R China;

    Wuhan Univ Sch Power &

    Mech Engn Key Lab Hydraul Machinery Transients Minist Educ Wuhan 430072 Hubei Peoples R China;

    Wuhan Univ Sch Power &

    Mech Engn Key Lab Hydraul Machinery Transients Minist Educ Wuhan 430072 Hubei Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    Solid oxide cell; In situ exsolution; Nanostructured electrode; Thermal stability; Distribution of relaxation times;

    机译:固体氧化物细胞;原位爆震;纳米结构电极;热稳定性;弛豫时间分布;
  • 入库时间 2022-08-20 00:35:42

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号