...
首页> 外文期刊>ACS Sustainable Chemistry & Engineering >Enhancing the Electrocatalytic Activity of Redox Stable Perovskite Fuel Electrodes in Solid Oxide Cells by Atomic Layer-Deposited Pt Nanoparticles
【24h】

Enhancing the Electrocatalytic Activity of Redox Stable Perovskite Fuel Electrodes in Solid Oxide Cells by Atomic Layer-Deposited Pt Nanoparticles

机译:用原子层沉积的PT纳米颗粒增强固体氧化物细胞中氧化还原稳定钙钛矿燃料电极的电催化活性

获取原文
获取原文并翻译 | 示例

摘要

The carbon dioxide and steam co-electrolysis in solid oxide cells offers an efficient way to store the intermittent renewable electricity in the form of syngas (CO + H-2), which constitutes a key intermediate for the chemical industry. The co-electrolysis process, however, is challenging in terms of materials selection. The cell composites, and particularly the fuel electrode, are required to exhibit adequate stability in redox environments and coking that rules out the conventional Ni cermets. La0.75Sr0.25Cr0.5Mn0.5O3 (LSCrM) perovskite oxides represent a promising alternative solution, but with electrocatalytic activity inferior to the conventional Ni-based cermets. Here, we report on how the electrochemical properties of a state-of-the-art LSCrM electrode can be significantly enhanced by introducing uniformly distributed Pt nanoparticles (18 nm) on its surface via the atomic layer deposition (ALD). At 850 degrees C, Pt nanoparticle deposition resulted in a similar to 62% increase of the syngas production rate during electrolysis mode (at 1.5 V), whereas the power output was improved by similar to 84% at fuel cell mode. Our results exemplify how the powerful ALD approach can be employed to uniformly disperse small amounts (similar to 50 mu g.cm(-2)) of highly active metals to boost the limited electrocatalytic properties of redox stable perovskite fuel electrodes with efficient material utilization.
机译:固体氧化物电池中的二氧化碳和蒸汽协同电解提供了一种以合成气(CO + H-2)形式存储间歇性再生电力的有效方法,这构成了化学工业的关键中间中间体。然而,在材料选择方面具有挑战性的共同电解过程。电池复合材料,特别是燃料电极,需要在氧化还原环境中表现出足够的稳定性,并焦化以传统的Ni Cermets排出。 LA0.75SR0.25CR0.5MN0.5O3(LSCRM)钙钛矿氧化物代表着一种有前途的替代溶液,但电催化活性不如传统的Ni基金属膜。在这里,我们通过通过原子层沉积(ALD)在其表面上引入均匀分布的Pt纳米颗粒(18nm)来报告最先进的LSCRM电极的电化学性质。在850℃下,Pt纳米颗粒沉积导致电解模式(1.5V)期间合成气生产速率的62%增加,而电力输出在燃料电池模式下相似于84%。我们的结果举例说明了如何使用强大的ALD方法来均匀地分散少量(类似于50μg1Cm(-2))的高活性金属,以提高氧化还原稳定钙钛矿燃料电极的有限电催化性能,具有有效的材料利用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号