...
首页> 外文期刊>ACS Sustainable Chemistry & Engineering >Ru/La0.5Pr0.5O1.75 Catalyst for Low-Temperature Ammonia Synthesis
【24h】

Ru/La0.5Pr0.5O1.75 Catalyst for Low-Temperature Ammonia Synthesis

机译:Ru / La0.5pr0.5O1.75低温氨合成催化剂

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To exploit the use of hydrogen as a source of sustainable energy, development of an efficient process for synthesizing an energy carrier such as ammonia under mild conditions will be necessary. Here, we show that Ru/La0.5Pr0.5O1.75 prereduced at an extraordinary high temperature wof 650 degrees C catalyzes high NH3-synthesis rates under mild conditions. At 400 degrees C under 1.0 MPa, the synthesis rate was comparable with that of most active oxide-supported Ru catalysts. Kinetic analysis revealed that hydrogen poisoning, which is a typical drawback for oxide-supported Ru catalysts such as Cs+/Ru/MgO, was effectively suppressed over Ru/La0.5Pr0.5O1.75. The high activity induced by high-temperature reduction was attributable to the good thermal stability of the support and a phase change of the La0.5Pr0.5O1.75 support during prereduction. Fourier transform-infrared spectroscopy measurements after N-2 adsorption on the catalyst revealed that electrons lwere efficiently donated from trigonal La0.5Pr0.5O1.5 to the antibonding pi orbital of the N N bond of N-2 via Ru atoms. Cleavage of the N N bond, the rate-determining step for ammonia synthesis, was thus accelerated. Our results expand the range of possibilities for developing more effective ammonia synthesis catalysts under mild conditions. Such catalysts will be needed to enable development of hydrogen-based sustainable energy resources.
机译:为了利用氢作为可持续能源的来源,需要开发用于在温和条件下合成氨的能量载体的有效方法。在这里,我们表明Ru / La0.5pr0.501.75在非凡的高温WOF下施用650℃,在温和条件下催化高NH3合成速率。在1.0MPa下的400摄氏度下,合成速率与最活性氧化物支持的Ru催化剂相当。动力学分析表明,氢中毒,即氧化物支持的Ru / MgO如CS + / Ru / MgO的典型缺点,在ru / la0.5pr0.5o1.75上有效地抑制了Cs + / Ru / MgO。高温降低诱导的高活性可归因于载体的良好热稳定性和LA0.5pr0.501.75在预防过程中载体的相变。傅里叶变换 - 红外光谱测量在催化剂上的N-2吸附后显示,电子将电子从Trigonal La0.5pr0.5O1.5提供给通过Ru原子的N-2的N n键的抗氢化Pi轨道。因此,加速了N N键的切割,氨合成的速率确定步骤。我们的结果扩大了在温和条件下开发更有效的氨合成催化剂的可能性范围。需要这种催化剂来实现基于氢的可持续能源资源的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号