Catalytic fast pyrolys'/> Decoupling the Role of External Mass Transfer and Intracrystalline Pore Diffusion on the Selectivity of HZSM-5 for the Catalytic Fast Pyrolysis of Biomass
首页> 外文期刊>ACS Sustainable Chemistry & Engineering >Decoupling the Role of External Mass Transfer and Intracrystalline Pore Diffusion on the Selectivity of HZSM-5 for the Catalytic Fast Pyrolysis of Biomass
【24h】

Decoupling the Role of External Mass Transfer and Intracrystalline Pore Diffusion on the Selectivity of HZSM-5 for the Catalytic Fast Pyrolysis of Biomass

机译:去耦对外传质的作用和脑啡肽孔隙扩散对生物质催化快速热解的HZSM-5选择性

获取原文
获取原文并翻译 | 示例
           

摘要

src="http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/ascecg/2017/ascecg.2017.5.issue-10/acssuschemeng.7b01578/20170926/images/medium/sc-2017-015788_0005.gif">Catalytic fast pyrolysis (CFP) using HZSM-5 zeolite catalysts serves as a promising route for the production of renewable chemicals from lignocellulosic biomass. However, this reaction is limited by the formation of coke, which can exceed 40% of carbon atoms present in the raw biomass feedstock. The role of structural parameters on coking remains unclear with both internal micropore diffusion and external mass transfer limitations hypothesized to actively contribute to carbon deposition. Here, we decouple the role of these parameters by comparing conventional in situ pyrolysis tests using model compounds to experiments performed with the reactant preadsorbed onto the zeolite catalyst. Experimental results supported by calculation of the mass transfer Biot number point to micropore diffusion as the dominant cause of coke formation. Specifically, the presence of defects such as internal crystal grain boundaries and extraframework species in the zeolite’s micropores actively contribute to this undesired side reaction. Conversely, external surface barriers were found to play a minimal role in the deposition of carbon.
机译:src =“http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/ascecg/2017/ socececg.2017.5.issue-10/acssuschemeng.7b01578/20170926/images/medium/sc使用HzSM-5沸石催化剂的催化快热解(CFP)用作从木质纤维素生物质生产可再生化学品的有希望的途径。然而,该反应受焦炭形成的限制,其可以超过原料生物质原料中存在的40%的碳原子。结构参数对焦化的作用仍不清楚,内部微孔扩散和外部传质限制假设,以积极促进碳沉积。在这里,我们通过使用模型化合物与用预先吸附到沸石催化剂上的反应物进行的实验来比较这些参数的作用通过比较常规的原位热解试验。通过计算质量转移生物编号点对微孔扩散的实验结果作为焦炭形成的显性原因。具体地,沸石微孔中存在诸如内晶晶界和预制态物种的缺陷的存在主动有助于这种不希望的副反应。相反,发现外表面屏障在碳的沉积中起着最小的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号