首页> 外文期刊>Crystal growth & design >Why Do Hydrates (Solvates) Form in Small Neu tral Organic Molecules? Exploring the Crystal Form Landscapes of the Alkaloids Brucine and Strychnine
【24h】

Why Do Hydrates (Solvates) Form in Small Neu tral Organic Molecules? Exploring the Crystal Form Landscapes of the Alkaloids Brucine and Strychnine

机译:为什么小中性有机分子会形成水合物(溶剂化物)?探索生物碱马钱子碱和马钱子碱的晶体形态景观

获取原文
获取原文并翻译 | 示例
       

摘要

Computational methods were used to generate and explore the crystal structure landscapes of the 2 alkaloids strychnine and brucine. The computed structures were analyzed and rationalized by correlating the modeling results to a rich pool of available experimental data. Despite their structural similarity, the 2 compounds show marked differences in the formation of solid forms. For strychnine, only 1 anhydrous form is reported in the literature and 2 new solvates from 1,4-dioxane were detected in the course of this work. In contrast, 22 solid forms are known so far to exist for brucine, comprising 2 anhydrates, 4 hydrates (HyA - HyC and a 5.25-hydrate), 12 solvates (alcohols and acetone), and 4 heterosolvates (mixed solvates with water and alcohols). For strychnine, it is hard to produce any solid form other than the stable anhydrate, while the formation of specific solid state forms of brucine is governed by a complex interplay between temperature and relative humidity/water activity and it is rather a challenge to avoid hydrate formation. Differences in crystal packing and the high tendency for brucine to form hydrates are not intuitive from the molecular structure alone, as both molecules have hydrogen bond acceptor groups but lack hydrogen bond donor groups. Only the evaluation of the crystal energy landscapes, in particular, the close-packed crystal structures and high-energy open frameworks containing voids of molecular (water) dimensions, allowed us to unravel the diverse solid state behavior of the 2 alkaloids at a molecular level. In this study we demonstrate that expanding the analysis of anhydrate crystal energy landscapes to higher energy structures and calculating the solvent-accessible volume can be used to estimate non-stoichiometric or channel hydrate (solvate) formation, without explicitly computing the hydrate/solvate crystal energy landscapes.
机译:使用计算方法来生成和探索两种生物碱士的宁和马钱子碱的晶体结构图。通过将建模结果与大量可用的实验数据相关联,对计算的结构进行了分析和合理化。尽管它们的结构相似,但两种化合物在固体形式的形成上显示出明显的差异。对于士的宁,文献中仅报道了1种无水形式,在此过程中检测到2种新的1,4-二恶烷溶剂化物。相反,到目前为止,已知有22种固体形式的brucine,包括2种无水物,4种水合物(HyA-HyC和5.25水合物),12种溶剂化物(醇和丙酮)和4种杂溶剂化物(与水和醇类混合的溶剂化物) )。对于士的宁,除稳定的无水物外,很难产生任何固体形式,而特定的固态形式的马钱子碱的形成则受温度和相对湿度/水活度之间复杂的相互作用所控制,而避免水合物是一个挑战。编队。仅从分子结构上看,晶体堆积的差异和苯丙氨酸形成水合物的高趋势并不直观,因为两个分子都具有氢键受体基团,但缺乏氢键供体基团。只有对晶体能态的评估,尤其是紧密堆积的晶体结构和包含分子(水)维度的空隙的高能开放框架,才使我们能够揭示两种生物碱在分子水平上的多种固态行为。 。在这项研究中,我们证明了将无水合物晶体能量分布图的分析扩展到更高的能量结构并计算溶剂可及体积可以用于估计非化学计量或通道水合物(溶剂化物)的形成,而无需明确计算水合物/溶剂化物晶体的能量风景。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号