...
首页> 外文期刊>ACS Sustainable Chemistry & Engineering >Photosynthesis-Inspired Acceleration of Carrier Separation: Co–O–Ac and CH3COO– Ions Synergistically Enhanced Photocatalytic Hydrogen Evolution of Graphitic Carbon Nitride
【24h】

Photosynthesis-Inspired Acceleration of Carrier Separation: Co–O–Ac and CH3COO– Ions Synergistically Enhanced Photocatalytic Hydrogen Evolution of Graphitic Carbon Nitride

机译:光合作用的载体分离加速度:Co-O-AC和CH3COIONS协同增强的光催化氮化物的光催化氢气进化

获取原文
获取原文并翻译 | 示例

摘要

In natural photosynthesis, photoexcited carriers are transferred to the reactive sites by a series of transport mediators, and the multistep carrier transfer facilitates charge separation, thus conferring photosynthesis high quantum efficiency. However, the present strategy for improving artificial photosynthetic efficiency is commonly anchoring an oxidation or reduction cocatalyst onto the photocatalyst to execute one-step transport of the photogenerated holes or electrons. To further accelerate the charge separation during the artificial photosynthesis, we propose a synergistic transfer of holes by a fixed oxidation cocatalyst (cobalt oxide acetate, Co–O–Ac) and freely moving hole-transfer mediators (CH_(3)COO~(–) ions), the cooperation of which leads to markedly accelerated photocatalytic reaction kinetics of the reduction side of graphitic carbon nitride (g-C_(3)N_(4)). The optimal hydrogen evolution rate is up to 3932 μmol·h~(–1)·g~(–1), 3.8 times that of the bare g-C_(3)N_(4) (1030 μmol·h~(–1)·g~(–1)). The apparent quantum efficiency is 21.61% at 420 ± 10 nm. Our findings provide a facile and effective method for accelerating the hole transfer and thus for promoting the photocatalytic reaction kinetics.
机译:在天然光合作用中,通过一系列运输介导将光透镜载体转移到反应性部位,多级载波转移有助于电荷分离,从而促进光合作用高量子效率。然而,提高人造光合作用效率的本发明策略通常将氧化或还原助催化剂锚固到光催化剂上以执行光致孔或电子的一步传输。为了进一步加速人造光合作用期间的电荷分离,我们提出通过固定氧化助催化剂(氧化钴乙酸酯,CO-O-AC)和自由移动的空穴转移介质(CH_(3)COO〜( - )离子),合作导致石墨碳氮化物的还原侧显着加速光催化反应动力学(G-C_(3)N_(4))。最佳氢进化率高达3932μmol·h〜(-1)·g〜(-1),裸G-c_(3)n_(4)的3.8倍(1030μmol·h〜(-1 )·g〜(-1))。表观量子效率在420±10nm处为21.61%。我们的研究结果提供了一种容易和有效的方法,用于加速空穴传递,从而促进光催化反应动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号