...
首页> 外文期刊>ACS Sustainable Chemistry & Engineering >Nitrogen and Phosphorus Dual-Doped Graphene Aerogel Confined Monodisperse Iron Phosphide Nanodots as an Ultrafast and Long-Term Cycling Anode Material for Sodium-Ion Batteries
【24h】

Nitrogen and Phosphorus Dual-Doped Graphene Aerogel Confined Monodisperse Iron Phosphide Nanodots as an Ultrafast and Long-Term Cycling Anode Material for Sodium-Ion Batteries

机译:氮和磷双掺杂石墨烯气凝胶将单分散铁磷化碳纳米蛋白局限为钠离子电池的超快和长期循环阳极材料

获取原文
获取原文并翻译 | 示例

摘要

Transition metal phosphides have recently gained much interest as anodes for sodium-ion batteries (SIBs). However, their intrinsic volume change during Na ion uptake/release leads to poor cycling stability and limited rate performance. To solve this problem, a unique hybrid architecture of iron phosphide nanodots bound on 3D phosphorus-doped graphitic nitrogen-rich graphene (FeP/NPG) is obtained from the phosphidation of NH2-rich reduced graphene oxide (rGO) decorated Fe2O3. Mono-dispersed FeP nanodots integrating with 3D NPG networks and high content of graphitic N not only induce fast Na ion/electron transfer kinetic and excellent structural stability during long-term cycling, but also they enhance the capacitive contribution. These features of FeP/NPG result in high-performance sodium storage. A high reversible capacity of 613 mAh g(-1) is achieved at 50 mA g(-1). Also, an excellent rate capability of 422 and 349 mAh g(-1) is observed at 1 and 3 A g(-1), respectively. More importantly, an ultrastable capacity of 378 mAh g(-1) at 1 A g(-1) can be obtained upon long-term cycling. It shall be possible to extend this strategy for fabricating other transition metal phosphide based anodes for advanced SIBs.
机译:过渡金属磷化磷最近获得了很多兴趣的钠离子电池(SIB)的阳极。然而,它们在Na离子吸收/释放期间的固有体积变化导致循环稳定性差和有限的速率性能。为了解决这个问题,从NH 2的富含石墨烯氧化物(RGO)的磷化磷酸化,获得了在3D磷掺杂的石墨氮石墨烯(FEP / NPG)上的磷化铁纳米蛋白的独特混合结构。单分散的FEP纳米液体与3D NPG网络集成,高含量的石墨N不仅在长期循环期间诱导快速Na离子/电子转移动力学和优异的结构稳定性,而且它们增强了电容贡献。这些特征FEP / NPG导致高性能钠储存。在50mA g(-1)中实现了613mAhg(-1)的高可逆容量。此外,分别在1和3 A G(-1)下观察到422和349mAhg(-1)的优异速率能力。更重要的是,在长期循环时可以获得1Ag(-1)的378mAhg(-1)的可监视容量。应该可以扩展该策略,用于制造其他过渡金属基磷化物基阳极用于高级SIBs。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号