首页> 外文期刊>Advanced Powder Technology: The internation Journal of the Society of Powder Technology, Japan >A numerical simulation study of the path-resolved breakup behaviors of molten metal in high-pressure gas atomization: With emphasis on the role of shock waves in the gas/molten metal interaction
【24h】

A numerical simulation study of the path-resolved breakup behaviors of molten metal in high-pressure gas atomization: With emphasis on the role of shock waves in the gas/molten metal interaction

机译:高压气体雾化熔融金属分辨分解行为的数值模拟研究:强调冲击波在气/熔融金属相互作用中的作用

获取原文
获取原文并翻译 | 示例
       

摘要

Although high-pressure gas atomization has been widely used for the large-scale production of fine metal powders, high operating costs remain one of its biggest issues. The key to efficiency lies in how to strengthen the gas/molten metal interaction. Despite this, most of the extensive previous studies have focused on evaluating various nozzles by flow visualization and the size measurement of the resulting powder. It is known that strong shock waves are inevitably produced by a pressure mismatch through the nozzle, however the effect of those shock waves on gas flow and breakup behavior is still unclear. The purpose of this numerical simulation study was to determine whether any efficient paths for maximizing the gas-melt interaction exist, and to elucidate possible effects of the shock waves. Two types of supersonic nozzles were employed for the simulations: an annular slit nozzle, versus an isentropic plug nozzle working in shock-free mode. Single particle analysis was performed by injecting a single coarse droplet at different locations near the nozzle exit and then monitoring the local gas velocity and breakup characteristics along its path. The same path-resolved analysis was repeated for continuous droplet injection under various gas-to-melt ratios. The results indicate that more efficient paths exist for the maximal use of gas kinetic energy, and that shock waves are detrimental to producing smaller sized powders. (C) 2017 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
机译:虽然高压气体雾化已广泛用于大型金属粉末的大规模生产,但高运营成本仍然是其最大问题之一。效率的关键在于如何加强气体/熔融金属相互作用。尽管如此,以前的大部分研究已经集中在通过流动可视化和所得粉末的尺寸测量来评估各种喷嘴。众所周知,通过喷嘴的压力不匹配不可避免地产生强烈的冲击波,然而,这些冲击波对气体流动和分离行为的影响仍然不明确。该数值模拟研究的目的是确定是否存在最大化气体熔体相互作用的任何有效路径,并阐明冲击波的可能影响。采用两种类型的超音速喷嘴用于模拟:环形狭缝喷嘴,与在无减震模式下工作的等熵塞喷嘴。通过在喷嘴出口附近的不同位置注入单个粗液滴进行单颗粒分析,然后沿其路径监测局部气体速度和分解特性。在各种气 - 熔体比下重复相同的路径分辨分析,用于连续液滴注射。结果表明,最大地使用气体动能的更有效的路径,并且冲击波对生产较小的尺寸粉末是有害的。 (c)2017年日本粉末科技学会。由elsevier b.v发表。和日本粉末科技会。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号