首页> 外文期刊>Cryogenics >Performance analysis of no-vent fill process for liquid hydrogen tank in terrestrial and on-orbit environments
【24h】

Performance analysis of no-vent fill process for liquid hydrogen tank in terrestrial and on-orbit environments

机译:地面和在轨环境下液氢罐无排气口填充过程的性能分析

获取原文
获取原文并翻译 | 示例
           

摘要

Two finite difference computer models, aiming at the process predictions of no-vent fill in normal gravity and microgravity environments respectively, are developed to investigate the filling performance in a liquid hydrogen (LH2) tank. In the normal gravity case model, the tank/fluid system is divided into five control volume including ullage, bulk liquid, gas-liquid interface, ullage-adjacent wall, and liquid-adjacent wall. In the microgravity case model, vapor-liquid thermal equilibrium state is maintained throughout the process, and only two nodes representing fluid and wall regions are applied. To capture the liquid-wall heat transfer accurately, a series of heat transfer mechanisms are considered and modeled successively, including film boiling, transition boiling, nucleate boiling and liquid natural convection. The two models are validated by comparing their prediction with experimental data, which shows good agreement. Then the two models are used to investigate the performance of no-vent fill in different conditions and several conclusions are obtained. It shows that in the normal gravity environment the no-vent fill experiences a continuous pressure rise during the whole process and the maximum pressure occurs at the end of the operation, while the maximum pressure of the microgravity case occurs at the beginning stage of the process. Moreover, it seems that increasing inlet mass flux has an apparent influence on the pressure evolution of no-vent fill process in normal gravity but a little influence in microgravity. The larger initial wall temperature brings about more significant liquid evaporation during the filling operation, and then causes higher pressure evolution, no matter the filling process occurs under normal gravity or microgravity conditions. Reducing inlet liquid temperature can improve the filling performance in normal gravity, but cannot significantly reduce the maximum pressure in microgravity. The presented work benefits the understanding of the no-vent fill performance and may guide the design of on-orbit no-vent fill system. (C) 2015 Elsevier Ltd. All rights reserved.
机译:分别针对正常重力和微重力环境下的无排气填充过程的预测,开发了两种有限差分计算机模型,以研究液氢(LH2)罐中的填充性能。在正常重力情况下,储罐/流体系统被分为五个控制容积,包括废料,散装液体,气液界面,废料邻壁和液邻壁。在微重力情况模型中,在整个过程中保持汽-液热平衡状态,并且仅应用了代表流体和壁区域的两个节点。为了准确地捕获液壁传热,先后考虑并模拟了一系列传热机制,包括膜沸腾,过渡沸腾,核沸腾和液体自然对流。通过将它们的预测与实验数据进行比较来验证这两个模型,这显示出很好的一致性。然后使用这两个模型研究了在不同条件下无排气口的性能,并得出了一些结论。它表明,在正常重力环境下,无排气填充在整个过程中都会经历连续的压力上升,并且最大压力发生在操作结束时,而微重力情况下的最大压力发生在过程的开始阶段。 。此外,似乎增加的入口质量流量对法向重力下无排气孔填充过程的压力演变有明显影响,而对微重力影响很小。无论在正常重力或微重力条件下发生的填充过程如何,较大的初始壁温都会在灌装过程中引起更大的液体蒸发,然后引起更高的压力释放。降低入口液体温度可以提高正常重力下的填充性能,但不能显着降低微重力下的最大压力。提出的工作有益于对无排气孔填充性能的理解,并且可以指导在轨无排气孔填充系统的设计。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号