首页> 外文期刊>Acta Mechanica >A molecular dynamics study of effects of crystal orientation, size scale, and strain rate on penetration mechanisms of monocrystalline copper subjected to impact from a nickel penetrator at very high strain rates
【24h】

A molecular dynamics study of effects of crystal orientation, size scale, and strain rate on penetration mechanisms of monocrystalline copper subjected to impact from a nickel penetrator at very high strain rates

机译:晶体取向,尺寸规模和应变率对镍渗透器撞击的渗透机制对非常高的应变率的分子动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a systematic computational study to investigate the effects of crystal orientation, strain rate (impact velocity), and size (thickness) on plasticity and damage behavior of copper single crystals during the penetration process at the atomistic scale. For the penetration analysis, copper single crystals with different crystal orientations and thicknesses were impacted and penetrated by a cylindrical nickel penetrator at different initial velocities. Modified embedded atom method potentials were used to develop atomistic models, and over 250 molecular dynamics simulations were performed to fully reveal the effects of influence parameters on plasticity and damage behavior of the copper single crystals. The results show that the copper single crystal with an octal slip orientation exhibits the greatest strength and penetration resistance, while the copper crystal with the single slip orientation exhibits the lowest strength and resistance. The results further show that the strength and penetration resistance of the target increase as the thickness of the copper single crystals increases. Furthermore, as the impact velocity increases, damage and fragmentation increase. Conclusions drawn from this computational study are consistent with macroscale plasticity theories of metals and reaffirm the conclusions drawn by other researchers in previous experimental studies.
机译:本文介绍了系统的计算研究,以研究晶体取向,应变速率(冲击速度)和尺寸(厚度)对原子尺度渗透过程中铜单晶的塑性和损伤行为的影响。对于穿透分析,通过不同初始速度的圆柱形镍穿透器撞击具有不同晶体取向和厚度的铜单晶。改进的嵌入原子方法电位用于开发原子模型,并进行超过250个分子动力学模拟,以完全揭示影响参数对铜单晶的可塑性和损伤行为的影响。结果表明,铜单晶具有八连岩取向,具有最大的强度和渗透性,而具有单滑移取向的铜晶体表现出最低强度和电阻。结果进一步表明,随着铜单晶的厚度增加,目标增加的强度和渗透性增加。此外,随着冲击速度的增加,损伤和碎片增加。从该计算研究中得出的结论与金属的宏观塑性理论一致,并重申了以前的实验研究中的其他研究人员所汲取的结论。

著录项

  • 来源
    《Acta Mechanica》 |2020年第6期|共29页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号