首页> 外文期刊>Acta Mechanica >Computational and experimental investigation of the crystal orientation control effect on the electric permittivity and magnetic permeability of multiferroic composite materials
【24h】

Computational and experimental investigation of the crystal orientation control effect on the electric permittivity and magnetic permeability of multiferroic composite materials

机译:晶体取向控制对多体复合材料电渗透和磁渗透性的计算与实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the effect of crystal orientation control through polarization and magnetization treatments on physical properties was computationally and experimentally investigated for polycrystalline multiferroic composite materials consisting of ferroelectric and ferromagnetic phases. In the calculations, asymptotic homogenization theory was employed for scale-bridging between macrostructures and microstructures. The microstructural crystal orientations were ideally arranged on the assumption that the domain switching was perfectly done in both phases by a combination of external electric and magnetic fields in the vertical or horizontal direction. The homogenized physical properties, especially the electric permittivity and magnetic permeability, were compared among various microstructures with differently controlled crystal orientations for a BaTiO3/CoFe2O4 composite material. The computation identified an upper limit of the effect of crystal orientation control on physical properties. On the other hand, we focused on a polarization and magnetization treatment process as a case study, and then experimentally verified the effect of crystal orientation control. Specifically, a BaTiO3/Ni0.5Zn0.5Fe2O4 composite material was prepared through a wet mixing, molding, and sintering process, and then, it was poled electrically in the vertical direction and magnetically in the horizontal direction. Physical property measurements indicated that the in-plane components of the electric permittivity and magnetic permeability were increased, and the out-of-plane components were decreased by the polarization and magnetization treatments. The experimental results were qualitatively consistent with the computational results.
机译:在本文中,用于通过铁电和铁磁阶段组成的多晶多体复合材料来计算晶体取向控制对物理性质的偏振和磁化处理的影响。在计算中,采用渐近均质化理论用于宏观结构和微观结构之间的鳞片状桥接。理想地布置微结构晶体取向,假设域切换在两个相位通过垂直或水平方向上的外部电场和磁场的组合完全完成。在具有不同控制的晶体取向的用于BATIO3 / COFE2O4复合材料的各种微结构中,比较了均质化物理性质,尤其是电介质和磁导率。计算识别晶体取向控制对物理性质的效果的上限。另一方面,我们专注于极化和磁化处理过程作为案例研究,然后通过实验验证了晶体取向控制的影响。具体地,通过湿式混合,模塑和烧结工艺制备BATIO3 / Ni0.5ZN0.5FE2O4复合材料,然后,它在垂直方向上电动搅动,磁力沿水平方向磁化。物理性质测量表明,电介质和磁导率的面内分量增加,并且通过极化和磁化处理降低了平面外组分。实验结果与计算结果质量符合。

著录项

  • 来源
    《Acta Mechanica》 |2017年第8期|共15页
  • 作者单位

    Osaka Inst Technol Dept Mech Engn Asahi Ku 5-16-1 Omiya Osaka 5358585 Japan;

    Osaka Inst Technol Grad Sch Asahi Ku 5-16-1 Omiya Osaka 5358585 Japan;

    Osaka Inst Technol Grad Sch Asahi Ku 5-16-1 Omiya Osaka 5358585 Japan;

    Osaka Inst Technol Nanomat Microdevices Res Ctr Asahi Ku 5-16-1 Omiya Osaka 5358585 Japan;

    Tokai Univ Dept Precis Engn 4-1-1 Kitakaname Hiratsuka Kanagawa 2591292 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号