...
首页> 外文期刊>Acta of Bioengineering and Biomechanics >Development of multi-phase models of blood flow for medium-sized vessels with stenosis
【24h】

Development of multi-phase models of blood flow for medium-sized vessels with stenosis

机译:狭窄中型血管血流多相模型的发展

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose: The purpose of the work was to develop two-phase non-Newtonian blood models for medium-sized vessels with stenosis using power law and Herschel-Bulkley models. Methods: The blood flow was simulated in 3D models of blood vessels with 60% stenosis. The Ansys Fluent software was applied to implement the two-phase non-Newtonian blood models. In the present paper, the mixture model was selected to model the two phases of blood: plasma and red blood cells. Results: Simulations were carried out for four blood models: a) single-phase non-Newtonian, b) two-phase non-Newtonian, c) two-phase Herschel-Bulkley with yield stress 0 mPa, and d) two-phase Herschel-Bulkley with yield stress 10 mPa for blood plasma, while flow took place in vessel with stenosis 60%. Presentation of results in this paper shows that stenosis can substantially affect blood flow in the artery, causing variations of velocity and wall shear stress. Thus, the results in the present paper are maximum values of blood velocity and wall shear stress, profiles and distributions of blood velocity and wall shear stress computed for single-and two-phase blood models for medium-sized vessels with stenosis. Conclusions: For the two-phase blood models the influence of initial velocity on blood flow in the stenosis zone is not observed, the velocity profiles are symmetric and parabolic. Contrary, for the single phase non-Newtonian blood model, the velocity profile is flat in the stenosis zone and distribution of velocity is disturbed just behind the stenosis zone. The shapes of wall shear stress profiles for two-phase blood models are similar and symmetric in the center of stenosis. The biggest differences in maximum values of velocities and wall shear stress are observed between single phase non-Newtonian power law and Herschel-Bulkley blood models. The comparison of the obtained results with the literature indicates that the two-phase Herschel-Bulkley model is the most suitable for describing flow in medium-sized vessels with stenosis.
机译:目的:该工作的目的是为使用电力法和Herschel-Bulkley型号开发中型血管的两阶段非牛顿血液模型。方法:血流在3D血管模型中模拟了60%狭窄的血管。 ANSYS流畅的软件应用于实施两阶段非牛顿血液模型。在本文中,选择混合物模型以模拟血液的两阶段:血浆和红细胞。结果:仿真为四种血液模型进行:a)单相非牛顿,b)两相非牛顿,c)两相Herschel-bulkley,屈服应力0 mpa,d)两相herschel -bulkley屈服应力10 MPa用于血浆,而流动发生在狭窄60%的血管中。本文提出的结果表明,狭窄可以基本上影响动脉中的血流,从而导致速度和壁剪应力的变化。因此,本文的结果是血液速度和壁剪切应力的最大值,血液速度和壁剪切应力的曲线和壁剪切应力,用于具有狭窄的中型血管的单相和两相血液模型。结论:对于两阶段血液模型,未观察到狭窄区血流对血流的影响,速度曲线是对称的抛物线。相反,对于单相非牛顿血液模型,速度曲线在狭窄区内平坦,并且速度分布在狭窄区域后面被扰乱。两相血型模型的壁剪切应力分布的形状在狭窄的中心是相似和对称的。单相非牛顿电力法和Herschel-Bulkley血液模型之间观察到速度和墙壁剪切应力最大值的最大差异。与文献的所得结果的比较表明,两相Herschel-Bulkley模型最适合于描述具有狭窄的中型血管的流动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号