首页> 外文期刊>Acta biomaterialia >A unique methionine-rich protein-aragonite crystal complex: Structure and mechanical functions of the Pinctada fucata bivalve hinge ligament
【24h】

A unique methionine-rich protein-aragonite crystal complex: Structure and mechanical functions of the Pinctada fucata bivalve hinge ligament

机译:一种独特的富含甲硫氨酸的蛋白质 - 金属石晶体复合物:Pinctada Fucata Bivalve铰链韧带的结构和机械功能

获取原文
获取原文并翻译 | 示例
           

摘要

The bivalve hinge ligament holds the two shells together. The ligament functions as a spring to open the shells after they were closed by the adductor muscle. The ligament is a mineralized tissue that bears no resemblance to any other known tissue. About half the ligament is composed of a protein-rich matrix, and half of long and extremely thin segmented aragonite crystals. Here we study the hinge ligament of the pearl oyster Pinctada fucata. FIB SEM shows that the 3D organization is remarkably ordered. The full sequence of the major protein component contains a continuous segment of 30 repeats of MMMLPD. There is no known homologous protein. Knockdown of this protein prevents crystal formation, demonstrating that the integrity of the matrix is necessary for crystals to form. X-ray diffraction shows that the aragonite crystals are more aligned in the compressed ligament, indicating that the crystals may be actively contributing to the elastic properties. The fusion interphase that joins the ligament to the shell nacre is composed of a prismatic mineralized tissue with a thin organic-rich layer at its center. Nanoindentation of the dry interphase shows that the elastic modulus of the nacre adjacent to the interphase gradually decreases until it approximates that of the interphase. The interphase modulus slightly increases until it matches the ligament. All these observations demonstrate that the ligament shell complex is a remarkable biological tissue that has evolved unique properties that enable bivalves to open their shell effectively innumerable times during the lifetime of the animal.
机译:双向铰链韧带将两个壳体夹在一起。韧带用作弹簧以在接收器肌肉关闭后打开壳。韧带是与任何其他已知组织不相似的矿化组织。大约一半的韧带由富含蛋白质的基质组成,并且一半的长且极薄的分段的化石晶体。在这里,我们研究了珍珠牡蛎Pinctada Fucata的铰链韧带。 FIB SEM表明3D组织显着下令。主要蛋白质组分的全序列含有连续的30个MMMLPD的段。没有已知的同源蛋白质。该蛋白质的敲低来防止晶体形成,表明基质的完整性是晶体形成的。 X射线衍射表明,在压缩韧带中,曲线晶体更加对准,表明晶体可以是主动促进弹性性质的。将韧带连接到壳体凝固术中的融合间隔由棱镜矿化组织组成,其中心在其中心具有薄的有机物层。干燥间隔的纳米indentation表明,与界距相邻的Nacre的弹性模量逐渐降低,直到它近似于间隔。相互作用的模量略有增加,直到它与韧带相匹配。所有这些观察结果表明,韧带壳复合物是一种显着的生物组织,其具有发展的独特性质,使得在动物的寿命期间能够有效地在壳体上有效地打开它们的壳体。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号