首页> 外文期刊>Acta biomaterialia >Magnetic targeting of smooth muscle cells in vitro using a magnetic bacterial cellulose to improve cell retention in tissue-engineering vascular grafts
【24h】

Magnetic targeting of smooth muscle cells in vitro using a magnetic bacterial cellulose to improve cell retention in tissue-engineering vascular grafts

机译:使用磁性细菌纤维素体外平滑肌细胞的磁性靶向改善组织工程血管移植物中的细胞保留

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Tissue-engineered vascular grafts (TEVG) use biologically-active cells with or without supporting scaffolds to achieve tissue remodeling and regrowth of injured blood vessels. However, this process may take several weeks because the high hemodynamic shear stress at the damaged site causes cellular denudation and impairs tissue regrowth. We hypothesize that a material with magnetic properties can provide the force required to speed up re-endothelization at the vascular defect by facilitating high cell density coverage, especially during the first 24?h after implantation. To test our hypothesis, we designed a magnetic bacterial cellulose (MBC) to locally target cellsin vitrounder a pulsatile fluid flow (0.514?dynes?cm?2). This strategy can potentially increase cell homing at TEVG, without the need of blood cessation. The MBC was synthesized by anin situprecipitation method of Fe3+and Fe2+iron salts into bacterial cellulose (BC) pellicles to form Fe3O4nanoparticles along the BC’s fibrils, followed by the application of dextran coating to protect the embedded nanoparticles from oxidation. The iron salt concentration used in the synthesis of the MBC was tuned to balance the magnetic properties and cytocompatibility of the magnetic hydrogel. Our results showed a satisfactory MBC magnetization of up to 10?emu/g, which is above the value considered relevant for tissue engineering applications (0.05?emu/g). The MBC captured magnetically-functionalized cells under dynamic flow conditionsin vitro. MBC magnetic properties and cytocompatibility indicated a dependence on the initial iron oxide nanoparticle concentration. Statement of SignificanceMagnetic hydrogels represent a new class of functional materials with great potential in TVEG because they offer a platform to (1) release drugs on demand, (2) speed up tissue regrowth, and (3) provide mechanical cues to cells by its deformability capabilities. Here, we showed that a magnetic hydrogel, the MBC, was able to capture and retain magnetically-functionalized smooth muscle cells under pulsatile flow conditionsin vitro. A magnetic hydrogel with this feature can be used to obtain high-density cell coverage on sites that are aggressive for cell survival such as the luminal face of vascular grafts, whereas simultaneously can support the formation of a biologically-active cell layer that protects the material from restenosis and inflammation.
机译:组织工程血管移植物(TEVG)使用具有或不支持支架的生物活性细胞,以实现受伤血管的组织重塑和再生。然而,这种过程可能需要数周,因为受损部位的高血流动力剪切应力导致细胞剥蚀并损害组织再生。我们假设具有磁性性能的材料可以通过促进高细胞密度覆盖,特别是在植入后的前24μh期间,在血管缺陷中加速重新内皮所需的力。为了测试我们的假设,我们设计了一种磁性细菌纤维素(MBC),以局部靶向细胞蛋白vitrounder脉动液(0.514≤ynes?cm 2)。这种策略可能会增加TEVG的细胞归巢,而不需要血液停止。通过Fe3 +和Fe2 +铁盐的Anin原位涂料方法合成MBC,进入细菌纤维素(BC)颗粒,以沿着BC的原纤维形成Fe3O4NAnogly,然后施加葡聚糖涂层以保护嵌入的纳米颗粒免受氧化。用于合成MBC的铁盐浓度以平衡磁性水凝胶的磁性和细胞组合。我们的结果显示出令人满意的MBC磁化,高达10?EMU / g,高于对组织工程应用相关的价值(0.05?emu / g)。 MBC在动态流动条件下捕获磁性官能化细胞。 MBC磁性和细胞相容性指示依赖于初始氧化铁纳米颗粒浓度的依赖性。有效的术语代表了一种新的功能材料,具有巨大的TVEG潜力,因为它们提供了(1)按需释放药物的平台,(2)加速组织再生,并且(3)通过可变形地向细胞提供机械提示能力。在这里,我们表明,MBC,MBC,MBC能够在脉动流动条件下捕获和保持磁性官能化的平滑肌细胞。具有该特征的磁性水凝胶可用于获得对诸如血管移植物的腔面的细胞存活的位点上的高密度细胞覆盖,而同时可以支持形成保护材料的生物活性细胞层从再狭窄和炎症。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号