...
首页> 外文期刊>Acta biomaterialia >Stretching single fibrin fibers hampers their lysis
【24h】

Stretching single fibrin fibers hampers their lysis

机译:拉伸单纤维蛋白纤维弹出裂解

获取原文
获取原文并翻译 | 示例

摘要

Graphical abstract Fibrin fibers thicken and elongate after lysis. Stretching fibrin fibers hampers lysis of uncrosslinked (red dots) and crosslinked (blue crosses) fibers. Strain may be a mechanobiological factor that regulates blood clot dissolution (fibrinolysis) at the single fiber level. Display Omitted Abstract Blood clots, whose main structural component is a mesh of microscopic fibrin fibers, experience mechanical strain from blood flow, clot retraction and interactions with platelets and other cells. We developed a transparent, striated and highly stretchable substrate made from fugitive glue (a styrenic block copolymer) to investigate how mechanical strain affects lysis of single, suspended fibrin fibers. In this suspended fiber assay, lysis manifested itself by fiber elongation, thickening (disassembly), fraying and collapse. Stretching single fibrin fibers significantly hampered their lysis. This effect was seen in uncrosslinked and crosslinked fibers. Crosslinking (without stretching) also hampered single fiber lysis. Our data suggest that strain is a novel mechanosensitive factor that regulates blood clot dissolution (fibrinolysis) at the single fiber level. At the molecular level of single fibrin molecules, strain may distort, or hinder access to, plasmin cleavage sites and thereby hamper lysis. Statement of significance Fibrin fibers are the major structural component of a blood clot. We developed a highly stretchable substrate made from fugitive glue and a suspended fibrin fiber lysis assay to investigate the effect of stretching on single fibrin fibers lysis. The key findings from our experiments are: 1) Fibers thicken and elongate upon lysis; 2) stretching strongly reduces lysis; 3) this effect is more pronounced for uncrosslinked fibers; and 4) stretching fibers has a similar effect on reducing lysis as crosslinking fibers. At the molecular level, strain may distort plasmin cleavage sites, or restrict access to those sites. Our results suggest that strain may be a novel mechanobiological factor that regulates fibrinolysis. ]]>
机译:图形摘要纤维蛋白纤维在裂解后加厚和细长。拉伸纤维蛋白纤维堵塞未交联(红色点)和交联(蓝横向)纤维的裂解。菌株可以是调节单纤维水平的血凝凝块溶解(纤维蛋白)的力学因子。显示省略的抽象血液凝块,其主要结构部件是微观纤维蛋白纤维的滤网,从血流,凝块缩回和与血小板和其他细胞的相互作用体验机械菌株。我们开发了由逃逸胶(苯乙烯嵌段共聚物)制成的透明,条纹和高度可伸缩的基材,以研究机械菌株如何影响单一悬浮纤维蛋白纤维的裂解。在该悬浮的纤维测定中,裂解通过纤维伸长,增厚(拆卸),磨损和塌陷表现为本身。拉伸单一纤维蛋白纤维显着阻碍了它们的裂解。在未交联和交联的纤维中看到这种效果。交联(不拉伸)也阻碍了单纤维裂解。我们的数据表明,菌株是一种新的机械敏感因子,调节单纤维水平的血凝凝块溶解(纤维蛋白溶解)。在单一纤维蛋白分子的分子水平下,菌株可以扭曲,或妨碍纤溶酶切割位点,从而阻碍裂解。意义纤维蛋白纤维的陈述是血凝块的主要结构组分。我们开发了一种高度可伸缩的基材,由逃逸胶和悬浮的纤维蛋白纤维裂解测定进行,以研究拉伸对单纤维蛋白纤维裂解的影响。我们实验的主要发现是:1)纤维在裂解时加厚和细长; 2)拉伸强化裂解; 3)这种效果对于未交​​联的纤维更加明显; 4)拉伸纤维对减少裂解作为交联纤维具有类似的效果。在分子水平下,菌株可以扭曲纤溶酶切割位点,或限制对这些位点的途径。我们的研究结果表明,应变可以是调节纤维蛋白溶解的新型机动学因素。 ]]>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号